Главная
страница 1
Математическое моделирование изменения водного режима реки Ангары
в результате завершения строительства Ангарского каскада ГЭС

Карепова Е.Д.

Институт вычислительного моделирования СО РАН, Красноярск, тел. 2905023, jane@icm.krasn.ru


Федоров Г.А.

Сибирский федеральный университет, Красноярск, тел. 2905023, arkin@rambler.ru


Одной из важнейших проблем при прогнозировании изменения водного режима р. Ангара после ввода в эксплуатацию каскада ГЭС является моделирование неустановившегося течения в нижних бьефах ГЭС с целью оценки влияния их рабочего режима и катастрофически высокого попуска в условиях переполнения водохранилищ. В работе описан подход к решению этой проблемы, основанный на численном интегрировании уравнений Сен-Венана [1].

При моделировании используются уравнения Сен-Венана, описывающие одномерное неустановившееся движение воды по открытому руслу под действием силы тяжести [2, 3, 4]. В таких моделях считается, что центробежный эффект, связанный с извилистостью русла, пренебрежимо мал, поэтому, в частности, свободная поверхность принимается горизонтальной в каждом сечении: ξ = ξ(t, x) (ξ – отметка свободной поверхности, t - время, ось Ox направлена вдоль русла). Кроме того, движение предполагается медленно изменяющимся, что позволяет не учитывать местные потери напора (например, вследствие резкого сужения/расширения русла). Несмотря на одномерность, уравнения Сен-Венана учитывают параметры сечения русла в интегральных характеристиках, таких как площадь живого сечения и осредненная по ней пропускная способность русла. Эти характеристики, прежде всего, зависят от уровня воды в сечении. Коэффициент шероховатости n, описывающий сопротивление подстилающей поверхности, принимается различным в русле и при выходе воды на пойму и также осредняется по площади живого сечения.

При расчетах неустановившегося течения в русле р. Ангара рассматривается только докритическое течение, требующее задания по одному граничному условию в верхнем и нижнем створах. В верхнем сечении задаются наблюдаемые значения расходов Q = Q(t, x), а в нижнем створе – зависимость Q = Q(ξ(x)). Последняя зависимость является характеристикой замыкающего створа, и при ее получении используются натурные данные. Однако следует помнить, что кривая расходов в общем случае может меняться от года к году, поскольку расход воды в створе зависит не только от отметки уровня. При аналитическом задании кривой расходов можно использовать уравнение Маннинга. Анализ показывает, что для реальных русел при больших отметках уровня формула Маннинга дает завышенный расход, а при малых – заниженный.

Поскольку на исследуемом участке реки имеются крупные боковые притоки, то при моделировании боковой приток задается расходом воды, отнесенным к единице длины. Оценки величины притока проводятся по методу бассейнов-индикаторов А.В. Огиевского с использованием данных о ежедневных расходах воды рек-аналогов.

Для апробации и верификации общей модели рассмотрен участок р. Ангара от гидропоста Сыромолотово (БоГЭС) до гидропоста Татарка, общей протяженностью 414 км. Натурные данные наблюдений были предоставлены Отделом разработки и внедрения гидрометеорологических прогнозов Красноярского центра по гидрометеорологии и мониторингу окружающей среды с региональными функциями (КЦГМС-Р) РОСГИДРОМЕТА.

Для верификации модели использованы следующие исходные данные.

1. Схематизация русла и поймы (рис. 1) по 56 характерным створам, включающим батиметрию русла и высоты поймы. Для каждого створа задавались различные значения коэффициентов шероховатости Маннинга для русла и поймы с учетом характеристики подстилающей поверхности (рис. 3). Данные были использованы для построения вычислительной сетки и расчета параметров уравнений.

2. В качестве граничного условия в верхнем створе использовалась зависимость Q(t) (гидрограф стока), соответствующем водомерному посту Сыромолотово (442 км от устья Ангары). Зависимость задавалась по данным Гидрологических ежегодников.

3. В качестве граничного условия в замыкающем створе использовалась зависимость Q(ξ) (кривая расходов, рис. 2), соответствующая водомерному посту Татарка (30 км от устья Ангары). Зависимость была построена по данным наблюдений в весенне-летний период 1979 – 2005 годов (средняя водность). При этом отсекались данные, соответствующие дням с характерными ледовыми явлениями.

4. Для определения бокового притока водосбор был поделен на семь участков, боковой приток c которых оценивался по притоку соответствующих рек-аналогов с известной динамикой расходов. На исследуемом участка расположен крупный приток р.Ангара р.Тасеева. При моделировании этот приток учитывался точечно.



 Тестовые расчеты проводились на основе данных наблюдений в весенне-летние периоды: 1) 1979 г., как года с низкой водностью; 2) 1989 г., как года с частыми дождевыми паводками в летний период; 3) 1999 г., как года с высокой водностью, бурным половодьем; 4) 2004 – 2005 гг., как годов со среднестатистической водностью.

Для сравнительного анализа расчетов и данных наблюдений использовалась следующая информация:

1) изменение среднесуточных отметок уровня ξ(t) и расходов воды Q(t) в нижнем створе исследуемого участка, соответствующего водомерному посту Татарка;

2) зависимости ξ(t) и Q(t) в трех промежуточных створах, соответствующих водомерным постам Богучаны (322 км от устья р. Ангара), Каменка (214 км от устья р.Анагара) и Рыбное (106 км от устья р.Анагара).

Особо следует отметить, что ледовые явления и связанные с ними подъемы уровня не описываются в рамках тестируемой модели. По этой причине достоверность расчетов проверялась, только начиная с момента, когда р. Ангара на всем рассматриваемом участке в основном очиститься ото льда.

Максимальная ошибка расчетов не превышает 0,5 м в промежуточных створах и 0,35 м в замыкающем створе. Эта ошибка связана со следующими не учитывающимися в модели явлениями. Во-первых, из-за большой протяженности исследуемого участка русло и пойма неравномерно очищается ото льда, вследствие чего в интересующий нас период не возможно полностью исключить влияние ледовых явлений. Во-вторых, ошибку в ряде случаев дают локальные дождевые паводки, данные о которых плохо учтены в стоках рек-аналогов. В-третьих, в предоставленных данных имеются несогласованности. В любом случае, ошибки локальны по времени (порядка 1-3 суток) и не влияют на глобальную динамику процесса.

Средняя ошибка не превышает 8 см, что составляет не более 3-4% от общего изменения рассчитываемой величины, и является приемлемой для практических расчетов.

На рисунке 4 представлены результаты одного из расчетов динамики отметок уровня за весенне-летний период 1989 года. Для сравнения приведены соответствующие фактические данные. Для замыкающего створа приведены вычисленный расход воды, а также боковой приток, рассчитанный по А.В. Огиевскому, а также приведены данные наблюдений в верхнем створе (гидропост Сыромолотово).



Таким образом, анализ проведенных расчетов показывает, что использованная модель дает хорошие результаты при согласованных данных наблюдений и, следовательно, пригодна для прогнозных расчетов неустановившегося течения в нижних бьефах Богучанской и Мотыгинской ГЭС. Более того, поскольку водохранилище Мотыгинской ГЭС является водохранилищем речного типа, то по модели могут быть выполнены расчеты и по распространению волн в водохранилище.

Приведем основные результаты анализа численных экспериментов.

1. При исследовании неустановившегося движения воды в нижнем бьефе Богучанской ГЭС без учета Мотыгинской ГЭС можно отметить следующее.

1.1. Показано, что без учета бокового притока на расстоянии порядка 100 км от створа Богучанской ГЭС суточные колебания отметок уровня воды, связанные с ее рабочим режимом, практически не заметны. Учет бокового притока показал уменьшение расстояния, на котором отмечается влияние суточных колебаний рабочего режима ГЭС до 60 км.

1.2. Анализ динамики кратковременного и длительного попусков Богучанской ГЭС в условиях переполнения ее водохранилища показал, что при предложенных сценариях уровень воды в замыкающем створе п. Татарка будет превышать паводковый.

1.3. Анализ распространения кратковременного попуска позволил также оценить скорости распространения его гребня.

2. При исследовании неустановившегося движения воды в нижнем бьефе Богучанской ГЭС с учетом водохранилища Мотыгинской ГЭС можно отметить следующие результаты численных экспериментов.

2.1. Определены суточные колебания расхода в замыкающем створе Мотыгинского водохранилища при фиксации отметок уровня в нем по НПУ 127 м БС для нескольких вариантах рабочих режимов Богучанской ГЭС. Для каждого из вариантов рассчитаны минимальные и максимальные расходы. Расчеты выполнялись без учета бокового притока.

2.2. При тех же рабочих режимах Богучанской ГЭС и условном «рабочем режиме» Мотыгинской ГЭС отмечено быстрое затухание амплитуд суточных колебаний по длине участка. При учете бокового притока, соответствующего одному из летних дождевых паводков рассмотрена общая динамика уровней водохранилища Мотыгинской ГЭС.

3. При исследовании неустановившегося движения воды в нижнем бьефе Мотыгинской ГЭС можно отметить следующие результаты численных экспериментов.

3.1. Исследована зависимость колебаний отметок уровня и расходов воды в створах нижнего бьефа от значений амплитуды ее рабочего режима с учетом бокового притока.

3.2. Рассмотрено прохождение в нижнем бьефе длительного высокого попуска (в условиях переполнения водохранилища). Боковой приток синхронизировался с паводком 1999 г (года с высокой водностью). При принятых расходах попуска, максимальные отметки уровня и расхода воды в п. Татарка и п. Рыбное были меньше фактически наблюденных при естественном режиме.


Список литературы
[1] Карепова Е.Д., Федоров Г.А. Моделирование неустановившегося течения воды в нижнем бьефе Богучанской ГЭС // ЖВТ. – 2008. – Т. 13, спецвыпуск 2. – С. 28 – 38.

[2] Картвелишвили Н.А. Неустановившиеся открытые потоки. Л: Гидрометеоиздат, 1968, 127 с.



[3] Кучмент Л.С. Математическое моделирование речного стока. Л.: Гидрометеоиздат, 1972, 191 с.

[4] Бураков Д.А., Карепова Е.Д., Шайдуров В.В. Математическое моделирование стока: теоретические основы, современное состояние, перспективы // Вестник КрасГУ. – № 4. – 2006 г. – С. 3 – 19.


Смотрите также:
Математическое моделирование изменения водного режима реки Ангары в результате завершения строительства Ангарского каскада гэс
66.82kb.
1 стр.
Современное состояние водно-энергетического комплекса
234.83kb.
1 стр.
Вступительного испытания собеседования для магистерской программы «математическое моделирование» направление подготовки
66.83kb.
1 стр.
Мохамед Математическое моделирование и алгоритмы оценки эффективности системы администрирования локальной компьютерной сети 05. 13. 18 Математическое моделирование, численные методы и комплексы программ 05
335.44kb.
1 стр.
Численное моделирование и разработка комплекса программ исследования теплообмена и ламинарного течения в регулярных продольнооребренных коридорных структурах
465.83kb.
2 стр.
Богучанская гэс: 10 лет спустя… Жива ли старушка?
79.8kb.
1 стр.
Дважды вопрос завершения строительства жилого дома был предметом обсуждения на заседаниях межведомственной комиссии при Губернаторе Самарской области по урегулированию вопросов долевого строительства
42.32kb.
1 стр.
Программа : Математическое моделирование Руководитель программы
42.53kb.
1 стр.
Подготовка кадров с высшим образованием по направлению 010400 «Прикладная математика и информатика»: бакалавриат по профилю «Прикладная информатика»
43.4kb.
1 стр.
Рабочая программа дисциплины б5 «Математическое моделирование» (индекс)
113kb.
1 стр.
Перечень документов: «История строительства Красноярской гэс в документах. 1955-1990гг.»
486.63kb.
4 стр.
Моделирование систем
36.03kb.
1 стр.