Главная
страница 1страница 2страница 3 ... страница 5страница 6


1.2. Виды знаний и способы их представления

Существуют различные определения понятия «знания». В одном из наиболее емких определений под знаниями понимают формализованную информацию, на которую ссылаются или которую используют в процессе решения задачи. Знание о предметной области включает описание объектов, их окружения, необ­ходимых явлений, фактов, а также отношений между ними. Общение с ЭВМ на уровне знания предопределяет возможность ввода в машину и использование ею некоторой совокупности взаимосвязанной информации. Сложность понятия «знание» заключена в множественности его носителя и неразрывности с поня­тием «данные». Выделяют несколько уровней формализации знания о предмет­ной области: знания в памяти человека; знания в форме языковой модели пред­метной области, используемые человеком и зафиксированные на физических носителях с использованием контекстно-зависимых языков, графических обра­зов и т. п.; знания, формализованные для их представления при использовании в ЭВМ; фактографические сведения или данные.



1.2.1. Виды знаний
Фактические и стратегические знания

Знания определяются как «...основные закономерности предметной облас­ти, позволяющие человеку решать конкретные производственные, научные и другие задачи, то есть факты, понятия, взаимосвязи, оценки, правила, эвристики (иначе фактические знания), а также стратегии принятия решения в этой обла­сти (иначе стратегические знания)».



Факты и эвристики

Некоторые авторы разделяют знания на две большие категории: факты и эврис­тики. Первая категория (факты) указывает на хорошо известные в той или иной предметной области обстоятельства. Такие знания еще называют текстовыми, имея в виду достаточную их освещенность в специальной литературе и учебниках. Вторая категория знаний (эвристики) основывается на индивидуальном опыте специалиста (эксперта) в предметной области, накопленном в результате многолетней практики. Эта категория нередко играет решающую роль при построе­нии интеллектуальных программ. Сюда относятся такие знания, как «способы удаления бесполезных гипотез», «способы использования нечеткой информации», «способы разрешения противоречий» и т. п.



Декларативные и процедурные знания

Под декларативными знаниями подразумевают знания типа «А это В», и они характерны для баз данных. Это, например, такие факты, как «в час пик на улице много машин», «зажженная плита — горячая», «скарлатина — инфекционное) заболевание»...

К процедурным знаниям относятся сведения о способах оперирования или пре­образования декларативных знаний.

Интенсиональные и экстенсиональные знания

Интенсиональные знания — это знания о связях между атрибутами (признака­ми) объектов данной предметной области. Они оперируют абстрактными объек­тами, событиями и отношениями.

Экстенсиональные знания представляют собой данные, характеризующие конк­ретные объекты, их состояния, значения параметров в пространстве и времени.

Глубинные и поверхностные знания

В глубинных знаниях отражается понимание структуры предметной области, на­значение и взаимосвязь отдельных понятий (глубинные знания в фундаменталь­ных науках — это законы и теоретические основания). Поверхностные знания обычно касаются внешних эмпирических ассоциаций с каким-либо феноменом предметной области.

Например, для разговора по телефону требуется лишь поверхностное знание того, что, сняв трубку и правильно набрав номер, мы соединимся с нужным абонен­том. Большинство людей не испытывает необходимости в глубинных представ­лениях о структуре телефонной связи, конструкции телефонного аппарата, ко­торыми, безусловно, пользуются специалисты по телефонии.

Отмечается, что большинство экспертных систем основано на применении поверхностных знаний. Это, однако, нередко не мешает достигать вполне удов­летворительных результатов. Вместе с тем, опора на глубинные представления помогает создавать более мощные, гибкие и интеллектуальные адаптивные сис­темы. Наглядным примером может служить медицина. Здесь молодой и недос­таточно опытный врач часто действует по поверхностной модели: «Если кашель — то пить таблетки от кашля, если ангина — то эритромицин» и т. п. В то же время опытный врач, основываясь на глубинных знаниях, способен порождать разно­образные способы лечения одной и той же болезни в зависимости от индивиду­альных особенностей пациента, его состояния, наличия доступных лекарств в аптечной сети и т. д.

Глубинные знания являются результатом обобщения первичных понятий пред­метной области в некоторые более абстрактные структуры. Степень глубины и уровень обобщенности знаний непосредственно связаны с опытом экспертов и могут служить показателем их профессионального мастерства.

Жесткие и мягкие знания

Жесткие знания позволяют получать однозначные четкие рекомендации при заданных начальных условиях. Мягкие знания допускают множественные, «раз­мытые» решения и различные варианты рекомендаций (рис. П.16).

Характеристика различных предметных областей по глубине и жесткости дает возможность проследить тенденцию развития интеллектуальных систем.


Рис. П.16. Тенденция развития интеллектуальных систем

Как видно из рисунка, область практического применения интеллектуальных систем все более смещается в сферу задач с преобладанием глубинных и мягких знаний. Такие задачи еще называют трудно формализуемыми. Для них харак­терна одна или несколько следующих особенностей:



  • задача не может быть определена в числовой форме (требуется символьное представление);

  • алгоритмическое решение задачи не известно (хотя, возможно, и существует), или не может быть использовано из-за ограниченных ресурсов (памяти компьютера, быстродействия);

  • цели задачи не могут быть выражены в терминах точно определенной целевой функции или не существует точной математической модели задачи

Системы, основанные на знаниях, не отвергают и не заменяют традиционных подходов к решению формализованных задач. Они отличаются тем, что ориентированы на решение трудно формализуемых задач. Интеллектуальные системы особенно важны там, где наука не может создать конструктивных определений, область определений меняется, ситуации зависят от контекстов и языковая (описательная) модель доминирует над алгоритмической.


1.2.2. Модели представления знаний
Наиболее распространенными моделями представления знаний являются:

  • продукционные системы;

  • логические модели;

  • фреймы;

  • семантические сети.

Продукционные системы

В продукционных системах знания представляются в виде совокупности специ­альных информационных единиц.

В общем случае продукционная система включает следующие компоненты:


  • базу данных, содержащую множество фактов;

  • базу правил, содержащую набор продукций;

  • интерпретатор (механизм логического вывода) или правила работы с продук­циями.

База правил и база данных образуют базу знаний. Факты в базе данных пред­ставляют собой краткосрочную информацию и в принципе могут изменяться в ходе работы продукционной системы по мере накопления опыта. Правила явля­ются более долговременной информацией и предназначены для порождения гипотез (новых фактов) из того, что уже известно.

Продукционные системы делят на два типа — с прямыми и обратными вывода­ми. При прямом выводе рассуждение ведется от данных к гипотезам, а при об­ратном производится поиск доказательства или опровержения некоторой гипотезы. Часто используются комбинации прямой и обратной цепи рассуждений.

Продукции по сравнению с другими формами представления знаний имеют сле­дующие преимущества:


  • модульность;

  • единообразие структуры (основные компоненты продукционной системы могут применяться для построения интеллектуальных систем с различной проблемной ориентацией);

  • естественность (вывод заключения в продукционной системе во многом ана­логичен процессу рассуждений эксперта);

  • гибкость родовидовой иерархии понятий, которая поддерживается только как связи между правилами (изменение правила влечет за собой изменение в иерархии).

Однако продукционные системы не свободны от недостатков:

  • процесс вывода менее эффективен, чем в других системах, поскольку боль­шая часть времени при выводе затрачивается на непроизводительную проверку применимости правил;

  • этот процесс трудно поддается управлению;

  • сложно представить родовидовую иерархию понятий.

Представление знаний с помощью продукций иногда называют «плоским», так как в продукционных системах отсутствуют средства для установления иерар­хии правил. Объем базы знаний продукционных систем растет линейно, по мере включения в нее новых фрагментов знаний, в то время как в традиционных алго­ритмических системах, использующих деревья решений, зависимость между объ­емом базы знаний и количеством собственно знаний является логарифмической.

Логические модели

Логические модели представления знаний реализуются средствами логики пре­дикатов.

Предикатом называется функция, принимающая только два значения — истина и ложь — и предназначенная для выражения свойств объектов или связей между ними. Выражение, в котором утверждается или отрицается наличие каких-либо свойств у объекта, называется высказыванием. Константы служат для именова­ния объектов предметной области. Логические предложения или высказывания образуют атомарные формулы. Интерпретация предиката — это множество всех допустимых связываний переменных с константами. Связывание представляет собой подстановку констант вместо переменных. Предикат считается общезна­чимым, если он истинен на всех возможных интерпретациях. Говорят, что выс­казывание логически следует из заданных посылок, если оно истинно всегда, когда истинны посылки.

Наиболее простым языком логики является исчисление высказываний, в котором отсутствуют переменные. Любому высказыванию можно приписать значение истинно или ложно. Отдельные высказывания могут соединяться связками И, ИЛИ, НЕ, которые называются булевыми операторами. Основу исчисления выс­казываний составляют правила образования сложных высказываний из атомар­ных.

Здесь переменные обозначают логические высказывания, о которых можно ска­зать, что они истинны или ложны. Логические операторы имеются в большин­стве языков программирования. Однако исчисление высказываний — недоста­точно выразительное средство для обработки знаний, поскольку в нем не могут быть представлены предложения, включающие переменные с кванторами.

Исчисление предикатов с кванторами (логика предикатов) является расшире­нием исчисления высказываний, в котором для выражения отношений между объектами предметной области могут использоваться предложения, включающие не только константы, но и переменные.

В общем случае модели, основанные на логике предикатов, описываются фор­мальной системой, которая задается четверкой:

М = (Т, Р, А, П),

где Т — множество базовых элементов или алфавит формальной системы; Р — множество синтаксических правил, с помощью которых можно строить син­таксически корректные предложения; А — множество аксиом или некоторых синтаксически правильных предложений, заданных априорно; П — правила продукций (правила вывода или семантические правила), с помо­щью которых можно расширять множество А, добавляя в него синтаксически правильные предложения.

Главное преимущество логических моделей представления знаний заключается в возможности непосредственно запрограммировать механизм вывода синтакси­чески правильных высказываний. Примером такого механизма служит, в част­ности, процедура вывода, построенная на основе метода резолюций. Однако с помощью правил, задающих синтаксис языка, нельзя установить истинность или ложность того или иного высказывания. Причем это распространяется абсо­лютно на все языки. Высказывание может быть построено синтаксически пра­вильно, но оказаться совершенно бессмысленным.

Логические модели представления и манипулирования знаниями были особен­но популярны в 70-х годах. Тогда казалось, что с появлением языков программи­рования типа ПРОЛОГ процедуры логического вывода в исчислении предика­тов будут достаточны для решения всех типов задач в интеллектуальных системах. Вместе с тем, по мере того как в поле зрения исследователей включались все новые интеллектуальные задачи, стало ясно, что говорить о доказательном выводе можно только в небольшом числе случаев, когда проблемная область, в которой реша­ется задача, формально описана и полностью известна. Но большинство задач, где интеллект человека позволяет находить нужные решения, связано с областя­ми, где знания принципиально неполны, неточны, некорректны и характеризу­ются еще немалым числом характеристик, начинающихся с частицы «не». При таких условиях речь может идти только о правдоподобном выводе, при ко­тором окончательный результат получается лишь с некоторой оценкой уверен­ности в его истинности. Кроме того, специалисты, работающие в плохо форма­лизованных областях (например, в медицине), рассуждают совсем не так, как представители точных наук. Для них весомым аргументом в пользу принятия какого-либо положения может быть мнение ряда признанных в этих областях авторитетов или, например, сходство доказываемого положения с другим, для которого решение уже известно. Поэтому дальнейшее развитие баз знаний по­шло по пути работ в области индуктивных логик, логик «здравого смысла», ло­гик веры и других логических систем, имеющих мало общего с классической ма­тематической логикой.

Фреймы

Фрейм чаще всего определяют как структуру данных для представления стерео­типных ситуаций. Модель представления знаний на основе фреймов использует концепцию организации памяти, понимания и обучения человека, предложен­ную М. Минским (1979). Фрейм (дословно — «рамка») — это единица представ­ления знаний, детали которой могут изменяться в соответствии с текущей ситу­ацией. Фрейм в любой момент может быть дополнен различной информацией, касающейся способов применения данного фрейма, последствий этого примене­ния и т. п.

Структура фрейма состоит из характеристик описываемой стереотипной ситуации и их значений, которые называются, соответственно, слотами и заполнителями слотов.

Имя фрейма:

Имя первого слота, значение первого слота

Имя второго слота, значение второго слота

Имя К-го слота, значение К-го слота

Незаполненный фрейм называется протофреймом, а заполненный — экзофреймом. Роль протофрейма как оболочки в экзофрейме весьма важна. Эта оболочка позволяет осуществлять процедуру внутренней интерпретации, благодаря кото­рой данные в памяти системы не безлики, а имеют вполне определенный, изве­стный системе смысл.

Слот может содержать не только конкретное значение, но и имя процедуры, позволяющей вычислить его по заданному алгоритму, а также одну или несколь­ко продукций (эвристик), с помощью которых это значение определяется. В слот может входить не одно, а несколько значений. Иногда этот слот включает ком­понент, называемый фасетом, который задает диапазон или перечень его воз­можных значений. Фасет указывает также граничные значения заполнителя слота.

Как уже отмечалось, помимо конкретного значения в слоте могут храниться процедуры и правила, которые вызываются при необходимости вычисления это­го значения. Среди них выделяют процедуры-демоны и процедуры-слуги. Первые запускаются автоматически при выполнении некоторого условия, а вторые ак­тивизируются только по специальному запросу. Если, например, фрейм, описы­вающий человека, включает слоты ДАТА РОЖДЕНИЯ и ВОЗРАСТ и в первом из них находится некоторое значение, то во втором слоте может стоять имя про­цедуры-демона, вычисляющей возраст по дате рождения и текущей дате и акти­визирующейся при каждом изменении текущей даты.

Совокупность фреймов, моделирующая какую-либо предметную область, пред­ставляет собой иерархическую структуру, в которую фреймы собираются с по­мощью родовидовых связей. На верхнем уровне иерархии находится фрейм, со­держащий наиболее общую информацию, истинную для всех остальных фреймов. Фреймы обладают способностью наследовать значения характеристик своих родителей, находящихся на более высоком уровне иерархии. Эти значения мо­гут передаваться по умолчанию фреймам, находящимся ниже них в иерархии, но если последние содержат собственные значения данных характеристик, то в качестве истинных принимаются именно они. Это обстоятельство позволяет без затруднений учитывать во фреймовых системах различного рода исключения.

Различают статические и динамические системы фреймов. В системах первого типа фреймы не могут быть изменены в процессе решения задачи, а в системах второго типа это допустимо.

О системах программирования, основанных на фреймах, говорят, что они явля­ются объектно-ориентированными. Каждый фрейм соответствует некоторому объекту предметной области, а слоты содержат описывающие этот объект данные, то есть в слотах находятся значения признаков объектов. Фрейм может быть представлен в виде списка свойств, а если использовать средства базы данных, то в виде записи.

Наиболее ярко достоинства фреймовых систем представления знаний проявля­ются в том случае, если родовидовые связи изменяются нечасто и предметная область насчитывает немного исключений. Во фреймовых системах данные о родовидовых связях хранятся явно, как и знания других типов. Значения слотов представляются в системе в единственном экземпляре, поскольку включаются только в один фрейм, описывающий наиболее общие понятия из всех тех, кото­рые содержит слот с данным именем. Такое свойство систем фреймов обеспечи­вает экономное размещение базы знаний в памяти компьютера. Еще одно досто­инство фреймов состоит в том, что значение любого слота может быть вычислено с помощью соответствующих процедур или найдено эвристическими методами. То есть фреймы позволяют манипулировать как декларативными, так и проце­дурными знаниями.

К недостаткам фреймовых систем относят их относительно высокую сложность, что проявляется в снижении скорости работы механизма вывода и увеличении трудоемкости внесения изменений в родовидовую иерархию. Поэтому большое внимание при разработке фреймовых систем уделяют наглядным способам ото­бражения и эффективным средствам редактирования фреймовых структур.

Семантические сети

Семантическая сеть описывает знания в виде сетевых структур. В качестве вер­шин сети выступают понятия, факты, объекты, события и т. п., а в качестве дуг сети — отношения, которыми вершины связаны между собой. Так, семантичес­кая сеть, представляющая знания об автомобиле гр. Васильева, показана на рис. П. 17.

Семантические сети часто рассматривают как общий формализм для представ­ления знаний. Частным случаем таких сетей являются сценарии, в которых в качестве отношений выступают каузальные отношения или отношения типа «цель — средство».

Вершины сети соединяются дугой, если соответствующие объекты предметной области находятся в каком-либо отношении. Самыми распространенными явля­ются следующие типы отношений:

БЫТЬ ЭЛЕМЕНТОМ КЛАССА (ЯВЛЯТЬСЯ) - означает, что объект входит в состав данного класса, например: ВАЗ 2106 является автомобилем;

ИМЕТЬ — позволяет задавать свойства объектов, например: жираф имеет длин­ную шею;

ЯВЛЯТЬСЯ СЛЕДСТВИЕМ — отражает причинно-следственные связи, напри­мер: астеническое состояние является следствием перенесенного простудного заболевания;

ИМЕТЬ ЗНАЧЕНИЕ — задает значение свойств объектов, например: пациент может иметь двух братьев.

Как и в системе, основанной на фреймах, в семантической сети могут быть пред­ставлены родовидовые отношения, которые позволяют реализовывать наследо­вание свойств от объектов-родителей. Это обстоятельство приводит к тому, что семантические сети приобретают все недостатки и достоинства представления знаний в виде фреймов. Преимущества заключаются в простоте и наглядности описания предметной области. Однако последнее свойство с усложнением семан­тической сети теряется и, кроме того, существенно увеличивается время вывода. Также к недостаткам семантических сетей относят сложность обработки различ­ного рода исключений.


Другие методы представления знаний

Из других методов представления знаний популярностью пользуется представ­ление знаний по примерам. Работая с системой такого типа, пользователь задает ей несколько примеров решения задач из актуальной предметной облас­ти. На основе этих примеров система самостоятельно строит базу знаний, кото­рая затем применяется для решения других задач. При создании базы знаний пользователь имеет возможность в любой момент вызвать на экран дисплея мат­рицу, состоящую из примеров задач и их решений, с тем чтобы установить в ней наличие пустых мест, которые необходимо заполнить недостающими примера­ми «задача—решение».

Знания в такой системе могут храниться в различной форме. Это может быть, например, интенсиональная форма, когда пользователь вводит в систему прави­ла операций с атрибутами объектов предметной области, приводящие к требуе­мому решению. Также это может быть экстенсиональная форма, при которой каждый пример детально описывается пользователем и представляется в памя­ти компьютера в виде совокупности значений выделенных атрибутов. Возможно сочетание и той, и другой форм. В результате получается матрица примеров, ко­торая может быть расширена или изменена лишь путем корректировки приме­ров, содержащихся в матрице, или их добавлением.

Основным достоинством представления знаний по примерам является простота данного способа, поскольку пользователь может не иметь ни малейшего пред­ставления о продукционных правилах, исчислении предикатов, фреймах и семан­тических сетях. Вместе с тем, в качестве недостатков метода представления знаний по примерам отмечают отсутствие гибкости процесса построения интеллектуаль­ной системы. Пользователь оказывается отстраненным от собственно создания базы знаний и поэтому не может контролировать связи между содержащимися в ней понятиями.

Выбор способа представления знаний осуществляется инженером по знаниям после того, как им достигнуто понимание природы данных моделируемой обла­сти. При решении сложных задач возможны ситуации, когда источники знаний различаются по типам, и, соответственно, представление таких знаний требует использования разных способов (смешанное представление). Тогда для продук­тивного функционирования интеллектуальной системы нередко применяют прин­цип доски объявлений, с помощью которого реализуется взаимодействие различ­ных независимых источников знаний.


<< предыдущая страница   следующая страница >>
Смотрите также:
В настоящее время курс «Основы искусственного интеллекта» является базовым при подготовке учителей информатики по специальности 030100. 00 информатика
788.06kb.
6 стр.
Программа собеседования по информатике (специальность 030100 «Информатика», заочная форма обучения) кызыл 20
71.65kb.
1 стр.
Теоретические основы информатики Содержание тестовых материалов Информатика и математика 2 курс агпа
209.72kb.
1 стр.
Творцы искусственного интеллекта
16.15kb.
1 стр.
Курс «Основы кибернетики» для студентов специализации 01. 02. 09. 01
83.88kb.
1 стр.
Программа по дисциплине «Лингвистические основы информатики» для специальности прикладная информатика в юриспруденции (351400)
78.73kb.
1 стр.
Учебно-методические постулаты и преподавание философии искусственного интеллекта
29.76kb.
1 стр.
Программа дисциплины Системы искусственного интеллекта  Для направления 230100 «Информатика и вычислительная техника»
130.76kb.
1 стр.
Исследование бессознательного для построения систем искусственного интеллекта
1203.11kb.
9 стр.
Основы генетики Наймушина Евгения Владимировна
24.59kb.
1 стр.
Информатика является одной из наиболее быстро и динамично разви-вающихся научных дисциплин
434.07kb.
7 стр.
Отделение общественных наук ран научный совет ран по методологии искусственного интеллекта
298.81kb.
1 стр.