Главная
|
страница 1
Министерство науки и образования Российской Федерации
Федеральное государственное автономное образовательное учреждение
высшего профессионального образования
«Московский физико-технический институт (государственный университет)»
МФТИ (ГУ)
Кафедра «Физика высокотемпературных процессов»
«УТВЕРЖДАЮ»
Проректор по учебной работе
О. А. Горшков
2012 г.
.
Рабочая УЧЕБНАЯ Программа
по дисциплине: Магнитная гидродинамика
по направлению: 010900 «Прикладные математика и физика»
профиль подготовки: Физика и химия плазмы
факультет: МБФ
кафедра: Физика высокотемпературных процессов
курс: 4 (бакалавриат)
семестры: 8 Дифференцированный зачет: 8 семестр
Трудоёмкость в зач. ед.: вариативная часть – 1 зач. ед.;
в т.ч.:
лекции: 32 час.;
практические (семинарские) занятия: нет;
лабораторные занятия: нет;
мастер классы, индивид. и групповые консультации: нет;
самостоятельная работа: 4 час.;
курсовые работы: нет.
ВСЕГО часов 36
Программу составил: д.т.н., профессор Медин С.А.
Программа обсуждена на заседании кафедры физики высокотемпературных процессов
«____» _______________2012 г.
Заведующий кафедрой академик, д.ф.-м.н. В.Е. Фортов
ОБЪЁМ УЧЕБНОЙ НАГРУЗКИ И ВИДЫ ОТЧЁТНОСТИ.
Вариативная часть, в т.ч. :
|
__1__ зач. ед.
|
Лекции
|
_32_ часа
|
Практические занятия
|
__-__ часов
|
Лабораторные работы
|
__-__ часов
|
Индивидуальные занятия с преподавателем
|
__-__ часов
|
Самостоятельные занятия, включая подготовку курсовой работы
|
_4_ часа
|
Мастер- классы, индивидуальные и групповые
Консультации
|
__-__ часов
|
Самостоятельные занятия (работа над коллективными и индивидуальными проектами, курсовые работы)
|
__-__ часов
|
ВСЕГО
|
36 часов (1 зач. ед.)
|
Итоговая аттестация
|
Диф. зачет: 8 семестр
|
-
ЦЕЛИ И ЗАДАЧИ
Целью освоения дисциплины «Магнитная гидродинамика» является изучение методов теоретических исследований течений электропроводной жидкости в магнитном поле и применения этих методов для решения фундаментальных и прикладных задач.
Задачами данного курса являются:
-
объединение уравнений электродинамики и гидродинамики в замкнутую систему уравнений электромагнитной гидродинамики;
-
формулировка магнитогидродинамического приближения, рассмотрение свойств уравнений магнитной гидродинамики и определение критериев подобия;
-
рассмотрение фундаментальных проблем магнитной гидродинамики - поверхностей разрыва, волновых процессов и устойчивости равновесных конфигураций;
-
решение прикладных задач: о течениях в магнитогидродинамических каналах, пограничных слоях и краевых электродинамических эффектах.
-
Место дисциплины в структуре ООП бакалавриата
Дисциплина «Магнитная гидродинамика» включает в себя разделы, которые могут быть отнесены к вариативной части профессионального цикла Б.3.
Дисциплина «Магнитная гидродинамика» базируется на материалах курсов бакалавриата: базовая и вариативная часть кода УЦ ООП Б.2 (математический естественнонаучный блок) по дисциплинам «Высшая математика» (математический анализ, высшая алгебра, дифференциальные уравнения и методы математической физики), блока «Общая физика» и региональной составляющей этого блока и относится к профессиональному циклу. Освоение курса необходимо для разносторонней подготовки бакалавров к профессиональной деятельности, включающей как проведение фундаментальных исследований, так и постановку и решение инженерных задач с использованием современной компьютерной техники.
-
Компетенции обучающегося, формируемые в результате освоения дисциплины
Освоение дисциплины «Магнитная гидродинамика» направлено на формирование следующих общекультурных и общепрофессиональных интегральных компетенций бакалавра:
а) общекультурные (ОК):
-
способность к обобщению, анализу, восприятию информации, постановке целей и выбору путей её достижения, к анализу последствий научной, производственной и социальной деятельности (владение культурой мышления) (ОК-1);
-
способность логически верно, аргументировано и ясно строить устную и письменную речь, формировать и аргументировано отстаивать собственную позицию (ОК-2);
-
способность обнаруживать определенные связи, новые точки зрения в предметах обсуждения, интегрировать имеющиеся знания в исследованиях и разработках, обосновывать целесообразность их проведения (ОК-13);
-
способность к изменению вида и характера своей профессиональной деятельности, к работе над междисциплинарными проектами (ОК-16);
б) профессиональные (ПК):
-
способность формализовать и решать отдельные части нестандартной задачи в общей постановке (ПК-1);
-
способность применять основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования в физике, химии, экологии, других естественных и социально-экономических науках (ПК-3);
-
способность самостоятельно работать на компьютере на уровне квалифицированного пользователя, применять информационно-коммуникационные технологии для обработки, хранения, представления и передачи информации с использованием универсальных пакетов прикладных программ, знание общих подходов и методов по совершенствованию информационно-коммуникационных технологий (ПК-6);
-
способность применять физические подходы и методы выявления структуры объектов и связи явлений в природе, технике и технологиях (ПК-11);
-
способность применять теорию и методы математики и информатики для построения качественных и количественных моделей в науке, технике и технологиях (ПК-12);
-
способность понимать, излагать и критически анализировать получаемую информацию и представлять результаты прикладных математических, физических исследований, направленных на решение инженерных, технических, социально-экономических, информационных технологических инновационных задач (ПК-17).
-
конкретные Знания, умения и навыки, формируемые в результате освоения дисциплины
В результате освоения дисциплины «Магнитная гидродинамика» обучающийся должен:
-
фундаментальные понятия, законы, теории классической и современной физики;
-
порядки численных величин, характерные для различных разделов электродинамики и гидродинамики;
-
современные проблемы теплофизики, энергетики, физики земли, математики;
-
основы термодинамики, молекулярной физики, физики плазмы, газовой динамики,
-
методы решения задач математической физики,
-
прикладные проблемы энергетики, авиационно-космических технологий.
-
Уметь:
-
пользоваться своими знаниями для решения фундаментальных, прикладных и технологических задач;
-
делать правильные выводы из сопоставления результатов теории и эксперимента;
-
производить численные оценки по порядку величины;
-
делать качественные выводы при переходе к предельным условиям в изучаемых проблемах;
-
видеть в технических задачах физическое содержание;
-
осваивать новые предметные области, теоретические подходы и экспериментальные методики.
-
Владеть:
-
культурой постановки и моделирования физических задач;
-
навыками грамотной обработки результатов экспериментов и сопоставления с теоретическими и литературными данными;
-
практикой исследования и решения теоретических и прикладных задач.
-
Структура и содержание дисциплины
-
Структура преподавания дисциплины
Перечень разделов дисциплины и распределение времени по темам
№ темы и название
|
Количество часов
|
1. Уравнения магнитной гидродинамики
|
8
|
2. Магнитостатика и магнитогидродинамические течения
|
14
|
3. МГД-течения в каналах
|
14
|
ВСЕГО (зач. ед. (часов))
|
36 часов (1 зач. ед.)
|
Лекции:
№ п.п.
|
Темы
|
Трудоёмкость
(количество часов)
|
1
|
Уравнения Максвелла. Нерелятивистское приближение, преобразование Лоренца. Закон Ома. Электродинамические условия на поверхностях разрыва. Уравнения сохранения электрического заряда, импульса и энергии электромагнитного поля. Пондеромоторная сила, тензор плотности потока импульса, плотность потока энергии, плотность работы поля над веществом.
|
2
|
2
|
Интегральные и дифференциальные уравнения сохранения массы, импульса и энергии вещества. Условия на поверхности разрыва. Магнитогидродинамическое приближение, физические ограничения и оценка главных членов в уравнениях Максвелла. Уравнение индукции, вмороженность и диффузия магнитного поля. Критерии подобия магнитной гидродинамики.
|
2
|
3
|
Соотношения на поверхностях разрыва. Классификация поверхностей разрыва. Прямой скачок в идеально проводящей среде, отношение плотностей и допустимые начальные скорости. Ударная адиабата для совершенного газа.
|
3
|
4
|
Невозмущенное состояние и линеаризация уравнений. Альфвеновские волны. Магнитозвуковые волны. Векторные диаграммы магнитогидродинамических волн. Диссипативное затухание альфвеновских волн.
|
2
|
5
|
Равновесие проводящей жидкости в магнитном поле. Условие равновесия ограниченного объема. Равновесные цилиндрические конфигурации, z-пинч и тета-пинч.
|
3
|
6
|
Задача устойчивости скинированного z – пинча. Постановка задачи и линеаризация уравнений. Дисперсионное уравнение. Перестановочная и винтовая моды неустойчивости, способы их подавления, области существования устойчивых конфигураций.
|
3
|
7
|
Постановка задачи Гартмана. Распределение скорости, эффект Гартмана, гидравлическое сопротивление. Распределение давления, пинч-эффект. Распределения плотности тока и магнитного поля, эффект конвекции магнитного поля.
|
3
|
8
|
Уравнения сохранения массы, импульса и энергии среды. Электродинамические уравнения, осреднение гидродинамических параметров потока. Электродинамические параметры канонического потока, осреднение закона Ома, МГД-ускоритель и МГД-генератор.
|
3
|
9
|
Уравнения обращения воздействий. Анализ МГД-воздействий на течение в канале постоянного сечения. Генераторный, ускорительный и тормозной режимы течения, эффекты механического и теплового воздействий. M, u – диаграмма, свойства и предельные режимы течения в МГД-устройствах.
|
4
|
10
|
Пограничный слой на стенках каналов. Уравнения сохранения и электродинамические соотношения. Граничные условия и сопряжение с уравнениями ядра потока. Особенности течений на электродных и изоляционных стенках.
|
3
|
11
|
Вторичные течения, механизм генерации вторичных течений токами Холла. Численное моделирование вторичных течений. Магнитоаэротермическая неустойчивость.
|
2
|
12
|
Концевые электродинамические эффекты в МГД-каналах. Влияние распределения магнитного поля на концевые эффекты. Эффект Холла в канале с секционированными электродами.
|
2
|
ВСЕГО (зач. ед. (часов))
|
32 часа (1 зач. ед.)
|
Самостоятельная работа:
№ п.п.
|
Темы
|
Трудоёмкость
(количество часов)
|
1
|
Уравнения Максвелла. Нерелятивистское приближение, преобразование Лоренца. Закон Ома. Электродинамические условия на поверхностях разрыва. Уравнения сохранения электрического заряда, импульса и энергии электромагнитного поля. Пондеромоторная сила, тензор плотности потока импульса, плотность потока энергии, плотность работы поля над веществом.
|
0,3
|
2
|
Интегральные и дифференциальные уравнения сохранения массы, импульса и энергии вещества. Условия на поверхности разрыва. Магнитогидродинамическое приближение, физические ограничения и оценка главных членов в уравнениях Максвелла. Уравнение индукции, вмороженность и диффузия магнитного поля. Критерии подобия магнитной гидродинамики.
|
0,3
|
3
|
Соотношения на поверхностях разрыва. Классификация поверхностей разрыва. Прямой скачок в идеально проводящей среде, отношение плотностей и допустимые начальные скорости. Ударная адиабата для совершенного газа.
|
0,3
|
4
|
Невозмущенное состояние и линеаризация уравнений. Альфвеновские волны. Магнитозвуковые волны. Векторные диаграммы магнитогидродинамических волн. Диссипативное затухание альфвеновских волн.
|
0,3
|
5
|
Равновесие проводящей жидкости в магнитном поле. Условие равновесия ограниченного объема. Равновесные цилиндрические конфигурации, z-пинч и тета-пинч.
|
0,3
|
6
|
Задача устойчивости скинированного z–пинча. Постановка задачи и линеаризация уравнений. Дисперсионное уравнение. Перестановочная и винтовая моды неустойчивости, способы их подавления, области существования устойчивых конфигураций.
|
0,3
|
7
|
Постановка задачи Гартмана. Распределение скорости, эффект Гартмана, гидравлическое сопротивление. Распределение давления, пинч-эффект. Распределения плотности тока и магнитного поля, эффект конвекции магнитного поля.
|
0,3
|
8
|
Уравнения сохранения массы, импульса и энергии среды. Электродинамические уравнения, осреднение гидродинамических параметров потока. Электродинамические параметры канонического потока, осреднение закона Ома, МГД-ускоритель и МГД-генератор.
|
0,3
|
9
|
Уравнения обращения воздействий. Анализ МГД-воздействий на течение в канале постоянного сечения. Генераторный, ускорительный и тормозной режимы течения, эффекты механического и теплового воздействий. M, u – диаграмма, свойства и предельные режимы течения в МГД-устройствах.
|
0,4
|
10
|
Пограничный слой на стенках каналов. Уравнения сохранения и электродинамические соотношения. Граничные условия и сопряжение с уравнениями ядра потока. Особенности течений на электродных и изоляционных стенках.
|
0,4
|
11
|
Вторичные течения, механизм генерации вторичных течений токами Холла. Численное моделирование вторичных течений. Магнитоаэротермическая неустойчивость.
|
0,4
|
12
|
Концевые электродинамические эффекты в МГД-каналах. Влияние распределения магнитного поля на концевые эффекты. Эффект Холла в канале с секционированными электродами.
|
0,4
|
ВСЕГО (зач. ед. (часов))
|
4 часа
|
-
Содержание дисциплины
№
п/п
|
Название модулей
|
Разделы и темы лекционных занятий
|
Содержание
|
Объем
|
Аудиторная работа
(часы)
|
Самостоятельная работа
(часы)
|
1
|
I
УРАВНЕНИЯ МАГНИТНОЙ ГИДРОДИНАМИКИ
|
Уравнения электродинамики
|
Уравнения Максвелла. Нерелятивистское приближение, преобразование Лоренца. Закон Ома. Электродинамические условия на поверхностях разрыва. Уравнения сохранения электрического заряда, импульса и энергии электромагнитного поля. Пондеромоторная сила, тензор плотности потока импульса, плотность потока энергии, плотность работы поля над веществом.
|
2
|
0,3
|
2
|
Уравнения магнитной гидродинамики
|
Интегральные и дифференциальные уравнения сохранения массы, импульса и энергии вещества. Условия на поверхности разрыва. Магнитогидродинамическое приближение, физические ограничения и оценка главных членов в уравнениях Максвелла. Уравнение индукции, вмороженность и диффузия магнитного поля. Критерии подобия магнитной гидродинамики.
|
2
|
0,3
|
3
|
Поверхности разрыва
|
Соотношения на поверхностях разрыва. Классификация поверхностей разрыва. Прямой скачок в идеально проводящей среде, отношение плотностей и допустимые начальные скорости. Ударная адиабата для совершенного газа.
|
3
|
0,3
|
4
|
Магнитогидродинамические волны
|
Невозмущенное состояние и линеаризация уравнений. Альфвеновские волны. Магнитозвуковые волны. Векторные диаграммы магнитогидродинамических волн. Диссипативное затухание альфвеновских волн.
|
2
|
0,3
|
5
|
II
МАГНИТОСТАТИКА И МАГНИТОГИДРОДИНАМИЧЕСКИЕ ТЕЧЕНИЯ
|
Магнитостатика
|
Равновесие проводящей жидкости в магнитном поле. Условие равновесия ограниченного объема. Равновесные цилиндрические конфигурации, z-пинч и тета-пинч.
|
3
|
0,3
|
6
| Неустойчивость скинированного z-пинча
|
Задача устойчивости скинированного z–пинча. Постановка задачи и линеаризация уравнений. Дисперсионное уравнение. Перестановочная и винтовая моды неустойчивости, способы их подавления, области существования устойчивых конфигураций.
|
3
|
0,3
|
7
|
Задача Гартмана
|
Постановка задачи Гартмана. Распределение скорости, эффект Гартмана, гидравлическое сопротивление. Распределение давления, пинч-эффект. Распределения плотности тока и магнитного поля, эффект конвекции магнитного поля.
|
3
|
0,3
|
8
|
Квазиодномерное приближение
|
Уравнения сохранения массы, импульса и энергии среды. Электродинамические уравнения, осреднение гидродинамических параметров потока. Электродинамические параметры канонического потока, осреднение закона Ома, МГД-ускоритель и МГД-генератор.
|
3
|
0,3
|
9
|
III
МГД-ТЕЧЕНИЯ В КАНАЛАХ
|
Обращение воздействий в магнитной гидродинамике
|
Уравнения обращения воздействий. Анализ МГД-воздействий на течение в канале постоянного сечения. Генераторный, ускорительный и тормозной режимы течения, эффекты механического и теплового воздействий. M, u – диаграмма, свойства и предельные режимы течения в МГД-устройствах.
|
4
|
0,4
|
10
| Течение у стенок каналов
|
Пограничный слой на стенках каналов. Уравнения сохранения и электродинамические соотношения. Граничные условия и сопряжение с уравнениями ядра потока. Особенности течений на электродных и изоляционных стенках.
|
3
|
0,4
|
11
|
Вторичные течения
|
Вторичные течения, механизм генерации вторичных течений токами Холла. Численное моделирование вторичных течений. Магнитоаэротермическая неустойчивость.
|
2
|
0,4
|
12
| Концевые электродинамические эффекты |
Концевые электродинамические эффекты в МГД-каналах. Влияние распределения магнитного поля на концевые эффекты. Эффект Холла в канале с секционированными электродами.
|
2
|
0,4
|
-
Образовательные технологии
№ п/п
|
Вид занятия
|
Форма проведения занятий
|
Цель
|
1
|
лекция
|
изложение теоретического материала
|
получение теоретических знаний по дисциплине
|
2
|
лекция
|
изложение теоретического материала с помощью презентаций
|
повышение степени понимания материала
|
3
|
самостоятельная работа студента
|
подготовка к экзамену и зачету с оценкой
|
повышение степени понимания материала
|
-
Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
Контрольно-измерительные материалы
Перечень контрольных вопросов для сдачи дифференцированного зачета в 8-ом семестре.
-
Уравнения Максвелла. Нерелятивистское приближение, преобразование Лоренца. Закон Ома. Электродинамические условия на поверхностях разрыва.
-
Уравнения сохранения электрического заряда, импульса и энергии электромагнитного поля. Пондеромоторная сила, тензор плотности потока импульса, плотность потока энергии, плотность работы поля над веществом.
-
Интегральные и дифференциальные уравнения сохранения массы, импульса и энергии вещества. Условия на поверхности разрыва.
-
Магнитогидродинамическое приближение, физические ограничения и оценка главных членов в уравнениях Максвелла. Уравнение индукции, вмороженность и диффузия магнитного поля. Критерии подобия магнитной гидродинамики.
-
Соотношения на поверхностях разрыва. Классификация поверхностей разрыва. Прямой скачок в идеально проводящей среде, отношение плотностей и допустимые начальные скорости. Ударная адиабата для совершенного газа.
-
Невозмущенное состояние и линеаризация уравнений. Альфвеновские волны. Магнитозвуковые волны. Векторные диаграммы магнитогидродинамических волн. Диссипативное затухание альфвеновских волн.
-
Равновесие проводящей жидкости в магнитном поле. Равновесные цилиндрические конфигурации, z-пинч и -пинч. Задача устойчивости скинированного z – пинча. Дисперсионное уравнение. Перестановочная и винтовая моды неустойчивости.
-
Эффект Гартмана, распределения скорости и давления, гидравлическое сопротивление. Пинч-эффект. Распределения плотности тока и магнитного поля, эффект конвекции магнитного поля.
-
Квазиодномерное приближение. Уравнения сохранения массы, импульса и энергии среды.
-
Обращение воздействий в магнитной гидродинамике. Генераторный, ускорительный и тормозной режимы течения, эффекты механического и теплового воздействий.
-
МГД – течения в каналах. Пограничный слой на стенках каналов. Уравнения сохранения и электродинамические соотношения. Особенности течений на электродных и изоляционных стенках.
-
Вторичные течения, механизм генерации вторичных течений токами Холла. Численное моделирование вторичных течений. Магнитоаэротермическая неустойчивость.
-
Концевые электродинамические эффекты в МГД-каналах. Влияние распределения магнитного поля на концевые эффекты. Эффект Холла в канале с секционированными электродами.
-
Материально-техническое обеспечение дисциплины
-
Необходимое оборудование для лекций и практических занятий: компьютер и мультимедийное оборудование (проектор), доступ к сети Интернет
-
Учебно-методическое и информационное обеспечение дисциплины
-
Основная литература
-
Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Том VIII. Электродинамика сплошных сред. М.: Физматлит, 2003.
-
Самарский А.А., Попов Ю.П. Разностные методы решения задач газовой динамики. М.: Едиториал УРСС, 2004.
Дополнительная литература
-
Шерклиф Дж. Курс магнитной гидродинамики. М.: Мир, 1967. 320с.
-
Куликовский А.Г., Любимов Г.А. Магнитная гидродинамика, М.: Физматгиз, 1962. 248с.
Электронные ресурсы, включая доступ к базам данных и т.д.
-
Курс лекций «Физика плазмы», http://www.inp.nsk.su/chairs/plasma/sk/fpl.ru.shtml
Программу составил
__________________ (д.т.н., профессор Медин С.А.)
«_____»_________2012 г.
Смотрите также:
Рабочая учебная программа по дисциплине: Магнитная гидродинамика по направлению: 010900 «Прикладные математика и физика»
174.49kb.
1 стр.
Рабочая учебная программа по дисциплине: Экспериментальная магнитная гидродинамика по направлению: 010900 «Прикладные математика и физика»
183.76kb.
1 стр.
Рабочая учебная программа по дисциплине: Физика высоких плотностей энергии по направлению: 010900 «Прикладные математика и физика»
183.34kb.
1 стр.
Рабочая учебная программа по дисциплине: Основы газодинамики по направлению: 010900 «Прикладные математика и физика»
153.42kb.
1 стр.
Рабочая учебная программа по дисциплине: Термодинамика конденсированного состояния по направлению: 010900 «Прикладные математика и физика»
197.99kb.
1 стр.
Рабочая учебная программа по дисциплине: Физические свойства плазмы по направлению: 010900 «Прикладные математика и физика»
186.9kb.
1 стр.
Рабочая учебная программа по дисциплине: Нестационарная аэродинамика летательных аппаратов по направлению: 010900 «Прикладные математика и физика»
39.4kb.
1 стр.
Рабочая учебная программа по дисциплине: Электрофизические процессы в импульсной энергетике по направлению: 010900 «Прикладные математика и физика»
174.64kb.
1 стр.
Рабочая учебная программа по дисциплине: Физико-химические процессы в газодинамике по направлению: 010900 «Прикладные математика и физика»
183.07kb.
1 стр.
Рабочая учебная программа по дисциплине: Физико-химические процессы в газоразрядной плазме по направлению: 010900 «Прикладные математика и физика»
278.91kb.
1 стр.
Рабочая учебная программа по дисциплине: Теоретические и технические основы численного анализа по направлению: 010900 «Прикладные математика и физика»
177.82kb.
1 стр.
Рабочая учебная программа по дисциплине: Современные проблемы теплофизики и энергосберегающих технологий по направлению: 010900 «Прикладные математика и физика»
173.21kb.
1 стр.
|
|