Главная Другое
Экономика Финансы Маркетинг Астрономия География Туризм Биология История Информатика Культура Математика Физика Философия Химия Банк Право Военное дело Бухгалтерия Журналистика Спорт Психология Литература Музыка Медицина |
страница 1страница 2страница 3 На правах рукописи Иванов Олег Михайлович РАЗВИТИЕ ТЕОРИИ И ТЕХНОЛОГИИ ПРОИЗВОДСТВА ЭЛЕКТРОФЛОКИРОВАННЫХ ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ Специальность: 05.19.02 – Технология и первичная обработка текстильных материалов и сырья
Санкт – Петербург 2007 Работа выполнена на кафедре технологии прядения и нетканых материалов Государственного образовательного учреждения высшего профессионального образования «Санкт-Петербургский государственный университет технологии и дизайна» Официальные оппоненты: Доктор технических наук, профессор ЧЕЛЫШЕВ Анатолий Михайлович Доктор технических наук, профессор КАПИТАНОВ Анатолий Федорович Доктор технических наук, профессор РОНЖИН Владимир Иванович Ведущая организация: ОАО Научно-производственный комплекс «ЦНИИШЕРСТЬ» Защита состоится «08» апреля 2008 года в 10 часов на заседании диссертационного Совета Д.212.236.01 при Государственном образовательном учреждении высшего профессионального образования «Санкт-Петербургский государственный университет технологии и дизайна», аудитория № 241. Адрес: 191186, Санкт-Петербург, ул. Большая Морская, д. 18. С диссертацией можно ознакомиться в библиотеке Государственного образовательного учреждения высшего профессионального образования «Санкт-Петербургский государственный университет технологии и дизайна». Автореферат разослан «07» марта 2008 г. Ученый секретарь диссертационного совета А.Е. Рудин ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность темы. Одно из важных направлений современной техники и технологии это использование взаимодействия полей и зарядов для управления потоком заряженных частиц. Такие технологии называют электронно-ионными. Для них характерно то, что весь арсенал воздействия прикладывается к каждой частице в потоке независимо от количества частиц. Технологию, реализующую ориентированное осаждение коротких заряженных волокон в электрическом поле, называют технологией электрофлокирования. В ее рамках осуществляют покрытие ворсом (флоком) различных материалов и изделий. Широкие возможности этой технологии применяют в разных отраслях промышленности и, в первую очередь, это текстильная промышленность, в рамках которой выпускают искусственную замшу и бархат, обивочные материалы, декоративные материалы с флокированными рисунками, флокированные нити, напольные покрытия, осуществляют отделку одежды, скатертей, салфеток, портьер, рюкзаков и т.п. флокированными рисунками. Для совершенствования технологических процессов флокирования и создания новых направлений этой технологии необходимо дальнейшее развитие теоретических моделей процесса осаждения заряженного ворса и его ориентации на материале при электрофлокировании. При этом разрабатываемые модели должны, с одной стороны, учитывать геометрические и электрофизические характеристики ворса, а, с другой стороны, включать условия процесса зарядки и осаждения ворса на поверхность основы. Таким образом, для повышения экономической эффективности производства флокированных материалов необходимо решение научной проблемы: развить теорию, связывающую характеристики перерабатываемого сырья (волокон) и параметры электрического поля со скоростью протекания технологического процесса и включающую анализ структуры ворсового покрова, которая определяет качество флокированных материалов. Важность создания обобщенных моделей процесса заключается в том, что это позволит совершенствовать технологию путем обоснованного выбора режимов производства, рассчитывать допустимую скорость выпуска материала и его характеристики. Это важно для повышения производительности оборудования и улучшения качества выпускаемых материалов и изделий. При этом полученные закономерности применимы для самых разных направлений технологии и открывают путь к грамотному управлению существующими технологическими процессами и созданию новых направлений технологии. В настоящей диссертационной работе удалось разработать модели процесса осаждения заряженного ворса и его ориентации на флокированном материале, основанные на четко сформулированных исходных положениях, позволяющие рассчитать плотность тока, создаваемого движением заряженного ворса, и максимальную скорость подачи ворса, определяющую производительность процесса. Важность создания таких моделей в том, что они позволяют оптимизировать технологические режимы, прогнозировать максимальную скорость выпуска рулонных флокированных материалов, повышать их качество и управлять технологическим процессом. Исследования позволили создать технологию флокированния нитей, оптимизировать режим работы и предложить конструкцию узла флокированния, разработать новый способ получения многоцветных ворсовых узоров на плоских и объемных изделиях и конструктивное решение установки, обосновать возможность измерения плотности ворса методом оптического пропускания и разработать метод компьютерного анализа цветовых переходов на флокированных узорах. Цель работы состоит в развитии представлений технологии электрофлокирования на основе создания обобщенных математических моделей процесса, связывающих свойства ворса и условия его нанесения с параметрами, определяющими производительность и качество флокироаанных материалов. Для этого необходимо: определить факторы, ограничивающие производительность процесса; выбрать определяющий параметр ворса и характеристики, связанные со скоростью его нанесения; разработать математические модели осаждения потока заряженного ворса и его ориентации на материале; предложить методы измерения основных характеристик процесса для экспериментального обоснования моделей. Результаты могут быть использованы как для совершенствования технологии, так и создания ее новых направлений и методов измерения. Методы исследования. Теоретической и методологической основой исследования явились классические и современные представления, разработки и положения, применяемые в электронно-ионной технологии и технологии электрофлокирования с применением методов математического моделирования, дифференциальных уравнений, теории поля, численных методов, методов вычислительной математики, информатики и др. Кроме того, разработан новый способ комплексного определения параметров процесса электрофлокирования, позволяющий одновременно и независимо измерять плотность тока, скорость подачи и заряд, движущегося между электродами ворса. Научная новизна работы состоит в развитии теории процесса электрофлокирования на основе анализа влияния объемного заряда и ориентации ворса на поверхности материала, а также экспериментальном обосновании полученных теоретических результатов, куда входят:
Основные положения, выносимые на защиту. Разработана комплексная модель, описывающая процесс осаждения волокон в электрическом поле с учетом влияния основных технологических параметров, позволяющая совершенствовать существующие технологические процессы и создавать новые и включающая в себя:
Практическая значимость и реализация результатов работы - разработана технология производства флокированных нитей, включающая способ нанесения клея и нанесения ворса, камеру для термофиксации связующего и узел намотки нитей, на которые получено 8 патентов и авторских свидетельств, подтверждающих новизну технических и технологических решений; применение созданных технических и технологических решений обеспечивает большую скорость выпуска при высокой плотности и равномерности осаждения ворса на нити; - создана новая технология и установка для получения многоцветных ворсовых рисунков, которая основана на технических и технологических решениях, защищенных 3 патентами, открывающая новые возможности в отделке различных материалов и изделий и позволяющая расширить ассортимент подобных изделий; - разработано конструктивное решение узла флокирования нитей, обеспечивающее высокую производительность, основанное на модели осаждения ворса с учетом объемного заряда и описании неоднородного электрического поля ряда цилиндрических проводников; - предложен метод компьютерного анализа цветовых переходов на ворсовых узорах, основанный на представлении о распределении ворсинок по углам наклона и их взаимопроникновении при последовательном нанесении различных ворсов, который позволяет получать объективную количественную характеристику ширины цветового перехода, чтобы регулировать вид узора, получая контрастные или плавные цветовые переходы; - разработан способ контроля плотности ворса и на его основе создан лабораторный прибор для измерения плотности ворсового покрова на светопропускающих основах методом оптического пропускания, базирующийся на модели распределения ворса по углам наклона к вертикали; В целом новизна технических и технологических решений, разработанных на основе теоретических представлений и результатах исследований, подтверждается получением 16 патентов и авторских свидетельств;
Теория технологического процесса электрофлокирования должна определять предельные значения основных характеристик процесса, определяющих его производительность. Это связывает теорию процесса с реальной технологией, т.к. позволит расчетным путем прогнозировать скорость выпуска рулонных флокированных материалов или изделий с флокированным покрытием. Модель, связывающая характеристики ворса и условия протекания процесса с его производительностью, а также модель ориентации ворса и описание неоднородного поля, позволяет, как создавать новые направления технологии, так и совершенствовать существующие технологические процессы.
Рассмотрено движение заряженных волокон в электрическом поле и, показанное в работах Семенова В.А., влияние объемного заряда ворса на параметры электрического поля в объеме флокатора. Развитие это направление получило в работах автора, где впервые получена связь плотности тока j и скорости подачи ворса P с его свойствами и условиями нанесения. Было учтено влияние объемного заряда на напряженность поля при зарядке E0 и заряд ворса q, а также рассмотрен кинематический подход к анализу процесса. Такое описание позволило оценивать технологические характеристики процесса. Применение неоднородных электрических полей в технологии относится, прежде всего, к производству флокированных нитей, реализованному в Германии и развиваемому в России Бершевым Е.Н., Челышевым А.М. и автором данной работы. Кратко изложена технология получения флокированных рисунков, которой занимались Бершев Е.Н., Лобова Л.В. и Семенов В.А. В заключение описаны требования к качеству флокированных материалов и методы контроля ворса и ворсового покрова, которым посвятил ряд работ проф. Шляхтенко П.Г. Основной вывод раздела, это необходимость создания обобщенной теории, позволяющей связать свойства ворса и условия его нанесения с параметрами, определяющими производительность процесса и характеристиками, получаемого ворсового покрова. Такая теория позволит повысить эффективность существующих технологических процессов и создавать новые технологии. Вторая глава посвящена анализу зависимости плотности ворса от времени нанесения. Cкорость роста плотности ворсового покрова пропорциональна доле свободной площади и скорости подачи ворса. Величина и распределение объемного заряда изменяется с ростом плотности ворса на поверхности. Это ведет к изменению скорости подачи ворса. С учетом этого, решение дифференциального уравнения для плотности ворса от времени имеет следующий вид. ![]() где P0 = P(n = 0, t = 0) – скорость подачи ворса в начальный момент времени, t - время нанесения, k0 - коэффициент, определяющий диапазон изменения скорости подачи ворса. Результаты экспериментов подтвердили большую точность соотношения (1) во всех сериях измерений, а значит и факт влияния объемного заряда на протекание процесса. Важно, что значение скорости подачи ворса во всех случаях значительно меньше величины, измеренной без напряжения на электродах. Это подтверждает влияние объемного заряда, т.к. именно он ограничивает скорость подачи ворса.
Основным следствием раздела является теоретическое и экспериментальное обоснование линейной зависимости избыточного заряда ворса от напряженности электрического поля в рабочем диапазоне значений. Четвертая глава является ключевой для всей работы. Она посвящена созданию теоретической модели, связывающей параметры ворса (длина, диаметр, коэффициент зарядки) и условия его осаждения (напряжение, расстояние между электродами, напряженность) с основными технологическими характеристиками процесса – плотностью тока, создаваемого заряженным, движущимся ворсом и скоростью его подачи, т.е. количеством ворса, поступающего к единице площади поверхности материала за 1 секунду. Целью создания модели является определение предельного значения скорости осаждения ворса, которая связана с максимальной производительностью процесса. В начале раздела сформулированы основные положения, на которых базируется модель:
![]()
![]() где ρ(х) – объемная плотность заряда, находящегося в межэлектродном пространстве, ε0 – диэлектрическая постоянная.
![]() где
![]()
где k – «коэффициент зарядки» ворса, Кл м/В.
![]() где C = 1,11 l (d – 9,3 10-6) – коэффициент пропорциональности для силы аэродинамического сопротивления движению ворсинки Продифференцировав дважды уравнение закона сохранения энергии и, используя уравнение Пуассона и соотношение для плотности тока (3), выведено
Решение объединенного уравнения было получено в виде зависимости скорости движения ворса υ от координаты х. ![]() ![]() Возвращаясь к закону сохранения энергии, удалось получить функцию распределения потенциала между электродами (8), а используя граничные условия U(x = 0) = 0, U(x = h) = U0 - выражение для плотности тока (9). ![]() ![]() Соотношение для скорости подачи ворса выведено из уравнения плотности тока (9). ![]() ![]() Далее важно было установить связь среднего заряда ворса с условиями протекания процесса. Напряженность поля около заряжающего электрода можно получить, взяв производную функции распределения потенциала (8) в точке х = 0. Зная напряженность, легко определить заряд ворса (12). ![]() ![]() Плотность тока и скорость подачи ворса зависят от среднего заряда ворса, а он, в свою очередь, зависит от плотности тока. Из этой системы уравнений получено более простое выражение для плотности тока. ![]() Сравнение полученных соотношений (рис. 1) показало их хорошее совпадение в рабочем диапазоне значений напряженности (Е > 2 кВ/см). Важное следствие модели это существование предела для скорости подачи ворса, который связан со свойствами ворса и не зависит от напряженности: Следующим этапом стало рассмотрение процесса на основе кинематических уравнений. Используя известные преобразования Рис. 1. Влияние напряженности электрического поля на плотность тока. Интегрируя дифференциальное уравнение с использованием начальных и граничных условий получены временные зависимости движения ворса: ![]() ![]() ![]() Система кинематических уравнений (15), описывающая движение потока заряженного ворса с учетом объемного заряда, аэродинамического сопротивления и условий его зарядки, показывает, как меняется ускорение, скорость и координата ворса от времени. Пока скорость подачи мала, мала и плотность тока, а величина напряженности Е0 близка к напряженности поля без заряженного ворса E = U/h. При этом ускорение ворсинки максимально в начале ( Возрастание скорости подачи ворса, и увеличение объемного заряда ведет к снижению начальной напряженности Е0 и росту плотности тока j вплоть до Соответствующая скорость подачи равна: Эта скорость подачи ворса является максимальной в рабочем диапазоне напряженности и совпадает с выражением, полученным при «энергетическом» подходе. Далее, с учетом QΣ = j T, а также (5), получена связь времени движения ворса между электродами T с параметрами процесса: Это соотношение включает все исходные условия, но трансцендентное уравнение можно анализировать только численно. Если применить разложение экспоненты в ряд Тейлора, то при использовании первых трех членов разложения, уравнение (19) преобразуется к виду, из которого легко получить взаимосвязь плотности тока с напряженностью электрического поля. Используя условие зарядки ворса (5) и вводя «относительную напряженность» электрического поля около заряжающего электрода ![]() Аналогичное соотношение получено для скорости подачи ворса: ![]() Экспонента разложена в ряд в окрестности 0 ее показателя, поэтому следует определить область использования полученных выражений: ![]() При максимальной скорости подачи ворса Р диапазон изменения относительной напряженности определяется численно: ![]() Для экспериментальной проверки модели разработана методика одновременного и независимого измерения плотности тока, скорости подачи и заряда ворса при его однонаправленном движении. Схема представлена на рис. 2. Ворс поступает из бункера 1 с сетчатым дном, являющимся заряжающим электродом, и движется к нижнему электроду. Нижним электродом является электролит 6 в диэлектрической ячейке 5. Диаметр ячейки 5 таков, что весь ворс, вылетевший с верхнего электрода, попадает в ячейку с электролитом и не возвращается к верхнему электроду. Скорость подачи регулируется частотой вибрации бункера и размером ячеек сетки подающего бункера.
Смотрите также: Развитие теории и технологии производства электрофлокированных текстильных материалов
465.65kb.
3 стр.
«Технология и первичная обработка текстильных материалов и сырья»
332.5kb.
1 стр.
Обоснование ферментативных методов регулируемого расщепления углеводных примесей и делигнификации льняной ровницы. 05. 19. 02 Технология и первичная обработка текстильных материалов и сырья
348.15kb.
1 стр.
№1. Технология изготовления изделий из текстильных и не текстильных материалов ручным способом ( по примеру). Урок №1
54.46kb.
1 стр.
Учебное пособие по технологии Куценко Н. Б. Терминология швейного производства мбоу «тогурская сош», 2013
1533.88kb.
9 стр.
Программа дисциплины «Технологии производства иммунобиопрепаратов»
292.76kb.
1 стр.
Оптимизация и моделирование технологического процесса дублирования тафтинговых ковров
253.7kb.
1 стр.
Римляне разработали квази-заводскую систему производства вооружения для легионов, производства глиняной посуды для мирового рынка, и позже текстильных изделий, которые продавались на экспорт
167.1kb.
1 стр.
Статья технолога Артамонова А. Е. Химчистка
179.32kb.
1 стр.
Основы экономической теории
1600.4kb.
7 стр.
Введение в направление
1913.77kb.
10 стр.
Города ишима 22.54kb.
1 стр.
|