Главная
страница 1страница 2страница 3страница 4

  1. Понятие операционной системы; эволюция развития операционных систем; функции операционных систем и подходы к построению операционных систем.

ОС – базовый комплекс компьютерных программ, обеспечивающий управление аппаратными средствами компьютера, работу с файлами, ввод и вывод данных, а также выполнение прикладных программ и утилит.

В основном эволюцию развития ОС разделяют на 5 поколений:



Первое поколение (1940 – 50). Только появились ламповые вычислительные устройства. Разработан принцип программы. ОС отсутствуют, вся работа по управлению ведется разработчиками.

Второе поколение (1950 – 60). Вычислительные устройства работают на полупроводниковых элементах. Появляется прообраз ОС - системы пакетной обработки, которые просто автоматизируют запуск одной программы из пакета за другой и тем самым увеличивают коэффициент загрузки процессора.

Третье поколение (1960 - 70). Полупроводниковые элементы объединяются в интегральные микросхемы. Появляются ОС с поддержкойаппарата прерывания,планирования заданий, мультипрограммирования. Одна и та жеОС начинает работать на различных устройствах, но она по-прежнему остается пакетной. Также появляетсяоперационная система реального времени (ОСРВ), в которой ЭВМ применяется для управления техническими объектами. Характерным свойством для ОСРВ является реактивность- готовность системы вырабатывать управляющие воздействия незамедлительно.

Четвертое поколение (1970-80). ОС были многорежимными системами, обеспечивающими пакетную обработку, разделение времени, режим реального времени и мультипроцессорный режим. Появляется вытесняющая многозадачность и приоритетное планирование, а также выделение квот на использование ограниченных ресурсов компьютеров. Реализуется механизм виртуальной памяти и развитых файловых систем.

Пятое поколение (с середины 1980-х гг. по н.в.). ОС используют возможности сетевых технологий, в том числе технологии клиент – сервер, интерфейс становится графическим и дружественным.

Также существует 5 основных подходов к построению ОС



  • Монолитное ядро

  • Микроядернаяархитектура

  • Многоуровневая система

  • Виртуальная машина

  • Смешанная система




  1. Архитектура операционной системы. Классификация операционных систем. Эффективность и требования, предъявляемые к ОС.

Рассмотрим существующие архитектуры ОС.

Монолитное ядро - это такая схема операционной системы, при которой все ее компоненты являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путем непосредственного вызова процедур. Для монолитной операционной системы ядро совпадает со всей системой.Примером систем с монолитным ядром является большинство Unix-систем.

Преимущества

Недостатки

1) Наиболее архитектурно зрелые


1) Сложность в сопровождении системы


Многоуровневые системы. Всю вычислительную системуможно разбить на ряд более мелких уровней с хорошо определенными связями между ними, так чтобы объекты уровня N могли вызывать только объекты уровня N-1. Нижним уровнем в таких системах обычно является hardware, верхним уровнем – интерфейс пользователя. Чем ниже уровень, тем более привилегированные команды и действия может выполнять модуль, находящийся на этом уровне.

Преимущества

Недостатки

1) Хорошо реализуется

2) Хорошо тестируется

3) Хорошо модифицируется


1) Сложность в проектировании

2) Временные затраты на прохождение всех уровней.




Виртуальными машинами называют программную или аппаратную среду, исполняющую некоторый код. Зачастую виртуальная машина эмулирует работу реального компьютера. Примерами служит VMWareWorkstation и VirtualBox.

Преимущества

Недостатки

1) На одной машине множество различных ОС

1) Меньше в производительности, чем реальная система


Микроядерная архитектура.  Это такая архитектура, когда большинство составляющих ОCявляются самостоятельными программами.Взаимодействие между ними обеспечивает микроядро, которое работает в привилегированном режиме. Также оно осуществляет планирование использования процессора, первичную обработку прерываний, операции ввода-вывода и базовое управление памятью.

Преимущества

Недостатки

1) Высокая степень модульности ядра ОС

2) Большая надежность системы



1) Дополнительные расходы на взаимодействие с микроядром

2) Сложность в проектировании




Смешанные системы. В большинстве случаев современные операционные системы используют различные комбинации вышеприведенных подходов.

У ОС сформировалась своя классификация:



  • по назначению (общего, специального),

  • по режиму обработки задач (однозадачные, мультипрограммные),

  • по способу взаимодействия с системой (диалоговые, с пакетной обработкой)

  • по способам построения (рассмотрены выше)

К операционным системам современных компьютеров предъявляется ряд требований. Главным требованием является выполнение основных функций эффективного управления ресурсами и обеспечения удобного интерфейса для пользователя и прикладных программ. Современная ОС должна поддерживать мультипрограммную обработку, виртуальную память, свопинг, развитый интерфейс пользователя (многооконный графический, аудио -, менюориентированный и т.д.), высокую степень защиты, удобство работы, а также выполнять многие другие необходимые функции и услуги. Кроме этих требований функциональной полноты, к ОС предъявляется ряд важных эксплуатационных требований.

  • Эффективность.

  • Надежность и отказоустойчивость.

  • Безопасность (защищенность).

  • Предсказуемость.

  • Расширяемость.

  • Переносимость.

  • Совместимость.

  • Удобство.

  • Масштабируемость.



  1. Понятие процесса, его состояния, модель представления процесса в операционной системе и операции, которые могут выполняться над процессами операционной системой.

Понятие процесса характеризует некоторую совокупность набора исполняющихся команд, ассоциированных с ним ресурсов и текущего момента его выполнения, находящуюся под управлением операционной системы. В любой момент процесс полностью описывается своим контекстом, состоящим из регистровой, системной и пользовательской частей.

Процессы могут находиться в пяти основных состояниях:



  • рождение, 

  • готовность, 

  • исполнение, 

  • ожидание, 

  • закончил исполнение

В операционной системе процессы представляются определенной структурой данных, которая содержит следующую информацию (для разных ОС различается):

  • состояние, в котором находится процесс;

  • адрес команды, которая должна быть выполнена для него следующей;

  • содержимое регистров процессора;

  • данные, необходимые для планирования использования процессора и управления памятью;

  • учетные данные;

  • сведения об устройствах ввода-вывода, связанных с процессом.

Из состояния в состояние процесс переводится операционной системой в результате выполнения над ним операций. Операционная система может выполнять над процессами следующие пары операций: 

  • создание процесса - завершение процесса, 

  • приостановка процесса -  запуск процесса,

  • блокирование процесса - разблокирование процесса,

  • изменение приоритета процесса.



  1. Уровни планирования процессов в операционных системах. Основные цели и критерии планирования и параметры, на которых оно основывается. Алгоритмы планирования.

Планирование – это работа по определению того, в какой момент времени прервать выполнение одного процесса и какому процессу предоставить возможность выполняться.

При построении алгоритмов планирования выделяют три различных уровня:



  • долгосрочное;

  • краткосрочное;

  • среднесрочное.

К числу целей можно отнести следующие:

  • Справедливость. 

  • Эффективность. 

  • Сокращение полного времени выполнения.

  • Сокращение времени ожидания.

  • Сокращение времени отклика.

Критерии планирования:

  • Предсказуемость. 

  • Минимальные накладные расходы. 

  • Равномерная загрузка ресурсов вычислительной системы

  • Масштабируемость

Параметры планирования:

  • Статические  – предельные значения ресурсов системы: размер оперативной памяти, максимальное количество памяти на диске для осуществления свопинга, количество подключенных устройств ввода-вывода и т.п.

  • Динамические  – значения ресурсов системы на текущий момент.

Алгоритмы планирования

FCFS. Работает по принципу первым пришел, первым обслужен. Преимуществом алгоритма FCFS является легкость его реализации, недостатками – среднее время ожидания и среднее полное время выполнения для этого алгоритма существенно зависят от порядка расположения процессов в очереди.

RoundRobin. По сути, это алгоритм FCFS, только реализованный в режиме вытесняющего планирования (очередной процесс передается на исполнение по таймеру по истечении определенного кванта времени).

ShortestJobFirst. Если выбирать процесс не по порядку (как в FCFS и RR), а основываясь на его минимальном времени непрерывного использования процессора, то это позволит повысить производительность алгоритма планирования использования процессора. Описанный алгоритм получил название «кратчайшая работа первой» (англ. ShortestJobFirstSJF).

Основную сложность при реализации алгоритма SJF представляет невозможность точно знать в каждом случае время исполнения очередного процесса.



  1. Кооперация процессов и основные аспекты ее логической организации (санкционированное взаимодействие процессов)

Для нормального функционирования процессов операционная система старается максимально обособить их друг от друга. Тем не менее существуют причины для их взаимодействия:

  • Повышение скорости работы.

  • Совместное использование данных.

  • Модульная конструкция какой-либо системы.

  • Удобства работы пользователя

Категории средств обмена информацией

  • Сигнальные.

  • Канальные.

  • Разделяемая память.

Логическая организация механизма передачи информации

Установление связи. При использовании прямой адресации связь между процессами в классической операционной системе устанавливается автоматически, без дополнительных инициализирующих действий. При использовании непрямой адресации инициализация средства связи может и не требоваться. Информация, которой должен обладать процесс для взаимодействия с другими процессами, – это некий идентификатор промежуточного объекта для хранения данных, если он, конечно, не является единственным и неповторимым в вычислительной системе для всех.

Информационная валентность процессов и средств связи. При прямой адресации только одно фиксированное средство связи может быть задействовано для обмена данными между двумя процессами, и только эти два процесса могут быть ассоциированы с ним. При непрямой адресации может существовать более двух процессов, использующих один и тот же объект для данных, и более одного объекта может быть использовано двумя процессами.

Особенности передачи информации с помощью линий связи

Буферизация



  • Буфер нулевой емкости или отсутствует.

  • Буфер ограниченной емкости.

  • Буфер неограниченной емкости.

Поток ввода/вывода и сообщения

  • Поток ввода-вывода. Операции передачи/приема не интересуются содежимим данных

  • Сообщения. Процессы налагают на передаваемые данные некоторую структуру. Весь поток информации они разделяют на отдельные сообщения.

Надежность средств связи. Передача данных через разделяемую память является надежным способом связи. В остальных случаях нужно повышать надежность.

Завершение связи. Для способов связи, которые не подразумевали никаких инициализирующих действий, обычно ничего специального для окончания взаимодействия предпринимать не надо. Если установление св. требовало некоторой инициализации, то необходимо выполнить операции освобождения ресурса.

  1. Алгоритмы синхронизации (алгоритмы корректной организации взаимодействия процессов).

Критическая секция

Критическая секция – часть программы, результат выполнения которой может непредсказуемо меняться, если переменные, относящиеся к ней, изменяются другими потоками в то время, когда выполнение этой части еще не завершено. В примере критическая секция – файл “заказов”, являющийся разделяемым ресурсом для процессов R и S.



Алгоритм Деккера - первое известное корректное решение проблемы взаимного исключения.

Если два процесса пытаются перейти в критическую секцию одновременно, алгоритм позволит это только одному из них, основываясь на том, чья в этот момент очередь. Если один процесс уже вошёл в критическую секцию, другой будет ждать, пока первый покинет её. Это реализуется при помощи использования двух флагов (индикаторов "намерения" войти в критическую секцию) и переменной turn (показывающей, очередь какого из процессов наступила).

Процессы объявляют о намерении войти в критическую секцию; это проверяется внешним циклом «while». Если другой процесс не заявил о таком намерении, в критическую секцию можно безопасно войти (вне зависимости от того, чья сейчас очередь). Взаимное исключение всё равно будет гарантировано, так как ни один из процессов не может войти в критическую секцию до установки этого флага (подразумевается, что, по крайней мере, один процесс войдёт в цикл «while»). Это также гарантирует продвижение, так как не будет ожидания процесса, оставившего «намерение» войти в критическую секцию. В ином случае, если переменная другого процесса была установлена, входят в цикл «while» и переменная turn будет показывать, кому разрешено войти в критическую секцию. Процесс, чья очередь не наступила, оставляет намерение войти в критическую секцию до тех пор, пока не придёт его очередь (внутренний цикл «while»). Процесс, чья очередь пришла, выйдет из цикла «while» и войдёт в критическую секцию.

+ не требует специальных Test-and-set инструкций, по этому легко переносим на разные языки программирования и архитектуры компьютеров

-Действует только для двух процессов

Алгоритм Петерсона — программный алгоритм взаимного исключения потоков исполнения кода.

Перед тем как начать исполнение критической секции кода (то есть кода, обращающегося к защищаемым совместно используемым ресурсам), поток должен вызвать специальную процедуру (назовем ее EnterRegion) со своим номером в качестве параметра. Она должна организовать ожидание потока своей очереди входа в критическую секцию. После исполнения критической секции и выхода из нее, поток вызывает другую процедуру (назовем ее LeaveRegion), после чего уже другие потоки смогут войти в критическую область. Если оба процесса подошли к прологу практически одновременно, то они оба объявят о своей готовности и предложат выполняться друг другу. При этом одно из предложений всегда следует после другого. Тем самым работу в критическом участке продолжит процесс, которому было сделано последнее предложение.

-Как и алгоритм Деккера, действует только для 2 процессов

+Более простая реализация, чем у алгоритма Деккера



Алгоритм булочной. Алгоритм Петерсона дает нам решение задачи корректной организации взаимодействия двух процессов. Давайте рассмотрим теперь соответствующий алгоритм для n взаимодействующих процессов.

Каждый вновь прибывающий процесс получает метку с номером. Процесс с наименьшим номером метки обслуживается следующим. К сожалению, из-за неатомарности операции вычисления следующего номера алгоритм булочной не гарантирует, что у всех процессов будут метки с разными номерами. В случае равенства номеров меток у двух или более процессов первым обслуживается клиент с меньшим значением имени (имена можно сравнивать в лексикографическом порядке). Разделяемые структуры данных для алгоритма – это два массива



  1. Специальные механизмы синхронизации – семафоры Дейкстры, мониторы Хора, очереди сообщений.

Семафоры

Для устранения этого недостатка во многих ОС предусматриваются специальные системные вызовы (аппарат для работы с критическими секциями.

В разных ОС аппарат событий реализован по своему, но в любом случае используются системные функции, которые условно называют WAIT(x) и POST(x), где x – идентификатор некоторого события (например, освобождение ресурса).

Обобщающее средство синхронизации процессов предложил Дейкстра, который ввел новые примитивы, обозначаемые V (“открытие”) и P (“закрытие”), оперирующие над целыми неотрицательными переменными, называемыми семафорами.

Доступ любого процесса к семафору, за исключением момента его инициализации, может осуществляться только через эти две атомарные операции.

Смысл P(S) заключается в проверке текущего значения семафора S, и если S>0, то осуществляется переход к следующей за примитивом операции, иначе процесс переходит в состояние ожидания.

P(S):

Пока S==0



Процесс блокируется; S=S-1;

Операция V(S) связана с увеличением значения S на 1 и переводом одного или нескольких процессов в состояние готовности к исполнению процессором.

V(S):

S=S+1;


В простом случае, когда семафор работает в режиме 2-х состояний (S>0 и S=0), ео алгоритм работы полностью совпадает с алгоритмом работs мьютекса, а S выполняет роль блокирующей переменной.

“+”: пассивное ожидание (постановка в очередь и автоматическая выдача ресурсов)



  • возможность управления группой однородных ресурсов

“-”: не указывают непосредственно на критический ресурс

  • некорректное использование операций может привести к нарушению работоспособности (например, переставив местами операции P(e) и P(b) в функции Writer()).

Мониторы

Для облегчения работы программистов при создании параллельных программ без усилий на доказательства правильности алгоритмов и отслеживание взаимосвязанных объектов (что характерно при использовании семафоров) предложено высокоуровневое средство синхронизации, называемое мониторами.

Мониторы – тип данных, обладающий собственными переменными, значения которых могут быть изменены только с помощью вызова функций-методов монитора.

Функции-методы могут использовать в работе только данные, находящиеся внутри монитора, и свои параметры.

Доступ к мониторам в каждый момент времени имеет только один процесс.

Для организации не только взаимоисключений, но и очередности процессов, подобно семафорам f(full) и e(empty), было введено понятие условных переменных, над которыми можно совершать две операции wait и signal, отчасти похожие на операции P и V над семафорами.

Функция монитора выполняет операцию wait над какой-либо условной переменной. При этом процесс, выполнивший операцию wait, блокируется, становится неактивным, и другой процесс получает возможность войти в монитор.

Когда ожидаемое событие происходит, другой процесс внутри функции совершает операцию signal над той же самой условной переменной. Это приводит к пробуждению ранее заблокированного процесса, и он становится активным.

Исключение входа нескольких процессов в монитор реализуется компилятором, а не программистом, что делает ошибки менее вероятными.

Требуются специальные языки программирования и компиляторы (встречаются в языках, “параллельный Евклид”,”параллельный Паскаль”,Java).

Следует отметить, что условные переменные мониторов не запоминают предысторию, поэтому операцию signal всегда должна выполняться после операции wait(иначе выполнение операции wait всегда будет приводить к блокированию процесса).

Очереди сообщений

Механизм очередей сообщений позволяет процессам и потокам обмениваться структурированными сообщениями. Один или несколько процессов независимым образом могут посылать сообщения процессу – приемнику.

Очередь сообщений представляет возможность использовать несколько дисциплин обработки сообщений (FIFO, LIFO, приоритетный доступ, произвольный доступ).

При чтении сообщения из очереди удаления сообщения из очереди не происходит, и сообщение может быть прочитано несколько раз.

В очереди присутствуют не сами сообщения, а их адреса в памяти и размер. Эта информация размещается системой в сегменте памяти, доступном для всех задач, общающихся с помощью данной очереди

Основные функции управления очередью:



  • Создание новой очереди

  • Открытие существующей очереди

  • Чтение и удаление сообщений из очереди

  • Чтение без последующего удаления

  • Добавление сообщения в очередь

  • Завершение использование очереди

  • Удаление из очереди всех сообщений

  • Определение числа элементов в очереди



  1. Взаимоблокировки, тупиковые ситуации, "зависания" системы

следующая страница >>
Смотрите также:
Основы операционных систем
325.74kb.
1 стр.
Понятие операционной системы; эволюция развития операционных систем; функции операционных систем и подходы к построению операционных систем
813.11kb.
15 стр.
Понятие операционной системы; эволюция развития операционных систем; функции операционных систем и подходы к построению операционных систем
823.67kb.
4 стр.
Назначение и функции операционной системы
21.99kb.
1 стр.
Лабораторная работа №4 Теоретическая часть: Архитектура операционных систем > Общая структура операционной системы Windows 2000
507.42kb.
2 стр.
1. kde, gnome, Xfce это названия …
25.08kb.
1 стр.
Лекция №2. Назначение и функции операционной системы Операционные системы для автономного компьютера
192.56kb.
1 стр.
Рабочая программа «Ремонт и модернизация пк»
90.39kb.
1 стр.
«Введение. Принципы построения операционных систем»
424.92kb.
5 стр.
Установка нескольких операционных систем на одном компьютере
23.86kb.
1 стр.
Кафедра юнеско по нит
191.46kb.
1 стр.
Лекции Тема Общие принципы построения операционных систем
45.45kb.
1 стр.