Главная
страница 1страница 2страница 3

МЕХАНИЗМЫ И НЕСУЩИЕ КОНСТРУКЦИИ РАДИОЭЛЕКТРОННЫХ СРЕДСТВ


Часть 1. МЕХАНИКА РЭС

Подготовку будущего инженера соответствующей специальности в области теоретических разделов механики, на которых базируются прикладные методы создания механизмов и несущих конструкций, осуществляют посредством чтения дисциплины "Механизмы и несущие конструкции РЭС"

"Механика РЭС",первая часть дисциплины, состоит из следующих разделов:

1. Основы теории механизмов

2. Основы расчетов деталей механизмов на прочность, жесткость и устойчивость

3. Элементы теории точности механизмов и основы взаимозаменяемости

Первый раздел посвящён методам анализа и синтеза механизмов - устройств передачи механической энергии, движения и преобразования его параметров, характеристики процессов движения, в том числе колебательных. Особое внимание уделяется проектированию механизмов рациональной структуры, обеспечивающих требуемые значения кинематических и динамических параметров при минимальных потерях энергии и максимальной долговечности, т.е. наиболее полно соответствующих своему целевому назначению

Используя методы второго раздела, можно выбирать свойства материалов, необходимых для изготовления деталей, добиваться рациональной формы последних, определять напряжения и деформации, возникающие при работе механизмов и несущих конструкций. В итоге это позволит обеспечить необходимый уровень надежности технического устройства при проектировании и эксплуатации. Также во втором разделе рассматривается поведение элементов механизма, нагруженных внешними и внутренними усилиями - напряженное и деформированное состояния материала деталей и методы обеспечения их прочности и надежности.

В третьем разделе освещаются проблемы обеспечения функциональной взаимозаменяемости механизмов РЭС по параметрам кинематической точности, которые в значительной степени определяют функциональную пригодность всего РЭС. Также изучаются теоретические и экспериментальные методы определения показателей кинематической точности и способы достижения их заданных значений при проектировании и изготовлении механизмов

Общеизвестно, что механизмы входят в состав любого радиоэлектронного комплекса. По определению механизм, или передаточный механизм - это устройство для передачи механической энергии движения с преобразованием ее параметров от источника (двигателя, датчика, человека-оператора) к потребителю - устройству, для функционирования которого необходима энергия в виде механического перемещения. Механическими устройствами являются частью силовых приводов, устройств регистрации и воспроизведения информации, периферийного оборудования ЭВМ, автоматических манипуляторов и т.п. Несущие конструкции (каркасы и корпуса функциональных узлов, блоков и приборов) в свою очередь служат для размещения на них электрорадиоэлементов и соединительных проводников, т.е. самого радиоэлектронного средства. Знание всего вышеизложенного необходимо каждому инженеру, специализирующемуся в области проектировния РЭС

Развитие механики и методов проектирования механических конструкций и механизмов во многом осуществлялось благодаря трудам русских и советских ученых. Среди них особо известны имена П. Л. Чебышева, Н. Е. Жуковского, Л. В. Ассур, С. П. Тимошенко, И. И. Артоболевского, Н. И. Колчина, В. А. Гавриленко, В. И. Феодосьева, Г. С. Писаренко, Н. Г. Бруевича, Л. И. Якушева, Б. А. Тайц, Л. Н. Решетова, Ф. В. Дроздова, В. В. Кулагина, С. О. Доброгурского, О. Ф. Тищенко и многих других

В настоящее время развитие этих методов продолжается особенность современного этапа развития механических устройств состоит в том, что с появлением новых технических возможностей создаются и более оптимальные конструкции. В основном это происходит благодаря применению систем автоматизированного проектирования, использующих ЭВМ

РЭС - увеличение интенсивности нагрузок вследствие миниатюризации аппаратуры, замена вычислительных механизмов электронными устройствами, использование механизмов с особыми кинематическими характеристиками (периферийное оборудование ЭВМ, лентопротяжные и сканирующие механизмы систем регистрации и воспроизведения информации), широкое применение автоматизированного проектирования

РАЗДЕЛ 1. ОСНОВЫ ТЕОРИИ МЕХАНИЗМОВ

Глава 2. СТРУКТУРНЫЙ АНАЛИЗ МЕХАНИЗМОВ

2.1. Основные понятия и определения

Теория механизмов - наука, изучающая методы анализа и синтеза механизмов. Синтез механизма проводится с использованием результатов анализа механизмов известной структуры.

Методы анализа подробно освещаются в трёх разделах:

а) структурный анализ;

б) кинематический анализ;

в) динамический анализ



2.2. Структурный анализ механизмов

В задачи структурного анализа входят такие подвопросы, как определение структуры состава механизма, классификация подвижных соединений звеньев - кинематических пар и определение степени подвижности механизма. Причём причины, приводящие в движение звенья, не рассматриваются

Итак, механизм - это замкнутая кинематическая цепь, обладающая определенностью перемещений звеньев, т.е. при задании перемещения ведущего звена (или звеньев) все остальные - ведомые - получают вполне определенные перемещения. Структура механизма состоит из отдельных частей звеньев, соединенных друг с другом подвижно с помощью кинематических пар. Все неподвижные детали М считают одним звеном - стойкой. Среди подвижных звеньев различают ведущие - положения или перемещения их в каждый момент времени задают с помощью обобщенных координат, ведомые, положения и перемещения которых однозначно зависят от положений или перемещений ведуших

Кинематическая классификация КП

Кинематической парой принято называть соединение двух звеньев, обеспечивающее их определенное относительное перемещение. Звенья, объединенные КП в связанную систему, образуют кинематическую цепь

Классифицируя кинематические пары, стоит отметить, что по характеру относительных перемещений звеньев все пары делят на 5 классов. Класс пары определяется числом условий связи, наложенных на относительное перемещение звеньев: s = 6 - w, где 6 - число независимых перемещений свободного звена, w - число относительных независимых перемещений звеньев в паре. В винтовой паре 5-го класса линейное перемещение вдоль оси винта и вращательное вокруг нее связаны и образуют одно перемещение по винтовой линии

Определение степени подвижности механизма

Степень подвижности М - число независимых перемещений, которые нужно сообщить его ведущим звеньям, чтобы перемещения ведомых были однозначно определены

Степени подвижности механизма определяется по структурным формулам. Структурная формула механизма - уравнение, отражающее структуру и позволяющее определить степень подвижности:

w = 6k - sum[i* (p)i]1, 5 + qs, (2.1)

где 6k - сумма подвижностей k свободных звеньев, обьединяемых в M; sum[i* (p)i]1, 5 - сумма связей, образующихся в i парах класса (p)i (от 1 до 5 класса);

qs - дополнительные подвижности в M, обусловленные спецификой его структуры

Подвижности qs появляются в механизме в случае, когда перемещения части звеньев совершаются по одним и тем же поверхностям. Тем не менее общие ограничения позволяют звеньям перемещаться относительно друг друга, т.е. становится пассивными. Это равносильно появлению в M дополнительных подвижностей

Степень подвижности многоконтурного M

Сложные механизмы часто содержат несколько связанных замкнутых кинематических цепей - контуров, в каждом из которых может быть различное число ограничений. Для таких M степень подвижности определяется по формуле

w = (6 - qs/c) *k - sum (i- qs/c) * (p)i, (2.2) где c - число контуров в M

Это уравнение получается из (2.1) и условия k = sum[ (p)i] - c, справедливого для любого M . Например, для двухконтурного M на рис. 2.5 а, в контуре 1 q1 = 0, в контуре 2 q2 = 2 и qs = 2, следовательно, w = (6 - qs/c) *k - sum (i- qs/c) * (p)i = 5*7 - 4*7 - 3*1 - 2*1 = 2

В M на рис. 2.5 б, который подобен рассмотренному, но имеет q1 = 2, q2 = 3, qs = 5 :

w = (6 - qs/c) *k - sum (i- qs/c) * (p)i == (6 - 5/2) *7 - (5 - 5/2) *9 = 2

Степень подвижности этих M w = 2, т.е. у них должно быть два ведущих звена в каждом (например, звенья 1 и 7)

Пассивные звенья в механизмах

Как уже было сказано выше, подобные звенья в механизме дублируют друг друга и вводятся для повышения жесткости конструкции. При определениии степени подвижности такие звенья и соответствующие им КП не рассматривают



2.3. Рациональная структура механизма

Механизм, не имеющий внутренних пассивных ограничений принято называть механизмом рациональной структуры. Если же ограничения присутствуют, то они приводят к появлению в механизме внутренних усилий, которые дополнительно нагружают звенья, КП и вызывают деформацию звеньев и усиленный износ КП. В конечном счёте это может обернуться бесполезными потерями энергии. Пассивные ограничения в механизме находятся по формуле

q = w - 6k + sum[i* (p)i] . (2.3)

Стоит заметить, что для многоконтурных механизмов выражение не дает верного результата, так как в нем не учитываются связи между отдельными контурами. Точно определить пассивные ограничения в М, их характер можно с помощью метода анализа местных подвижностей в КП

Для этого рассматривают все возможные относительные перемещения звеньев в каждой КП, которые должны обеспечить требуемую подвижность звеньев в каждом контуре. Для замыкания любого контура без внутренних усилий необходимы три линейные подвижности вдоль трех произвольно ориентированных непараллельных осей и три угловые вокруг этих осей

Недостающую линейную подвижность по какой-либо оси можно скомпенсировать угловой - поворотом звена вокруг этой оси. Избыток подвижностей в контуре обеспечивает его подвижность, недостаток - пассивные ограничения. Избыточная подвижность в одном контуре может использоваться для компенсации пассивных ограничений в другом, если эта подвижность имеется у звена, входящего в оба контура. Для механизма строят таблицу - матрицу подвижностей, где линейные и угловые подвижности обозначают литерами соответствующих КП. Левая часть матрицы соответствует линейным подвижностям, правая - угловым



Глава 3. КИНЕМАТИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМОВ

3.1. Основные понятия и определения. Задачи кинематического анализа

3.1.1. Кратко подытожив вышесказанное, имеем: кинематический анализ - раздел теории механизмов, в котором изучают движение звеньев в М, однако причины, вызывающие движение, не рассматриваются. Кинематические параметры - положение звена относительно системы координат, его скорость и ускорение. Кинематические характеристики - функции, связывающие в М параметры движения ведущего звена с параметрами движения ведомого

Задачи кинематического анализа:

а) определение кинематических параметров звеньев М и их характер ных точек;

б) определение кинематических характеристик М

3.2. Основные виды движения звеньев

3.2.1. Основные виды движения:

а) поступательное;

б) вращательное;

в) сложное

Последний - общий случай движения, которое может быть представлено суммой поступательного и вращательного или как последовательность мгновенных вращательных движений

3.2.2. Поступательное движение. Твердое тело или звено перемещается так, что любая прямая, связанная с телом, остается параллельной своему первоначальному положению (рис. 3.1) . Перемещения, скорости и ускорения всех точек звена соответственно одинаковы. Если положения любых двух точек (например, A и В) определить векторами (r) a и (r) b, то при движении вектор (r) ab = AB не меняется, т.е. скорости (v) a и (v) b равны; также равны и ускорения (w) a и (w) b

3.2.3. Вращательное движение. Все точки звена движутся по круговым траекториям в параллельных плоскостях, а центры этих окружностей находятся на общей оси вращения (рис. 3.2)

Вращение характеризуется угловой скоростью omega = dfi/dr и угловым ускорением eps = domega/dtau. Линейная скорость точки при вращательном движении v = (dfi/dtau) x r = omega x r . Линейное ускорение:

w = dv/dtau = (domega/dtau) x r + omega x (dr/dtau) = eps x r + omega x omega x r = (w) t + (w) n . (3.1)

Вектор тангенциального ускорения (w) t направлен по касательной к траектории движения, нормального w (n) - к центру вращения

Модуль вектора полного ускорения

w = [ (eps*ro) **2 + ( (omega**2) *ro) **2]**0.5 = ro*[eps**2 + omega**4]**0.5, (3.2)

где ro - радиус вращения

3.2.4. Сложное движение звена. Его обычно представляют суммой двух более простых движений: относительного в подвижной системе координат K' и переносного вместе с этой системой относительно системы координат K, которая обычно неподвижна (рис. 3.3)

3.2.5. Скорости и ускорения при сложном движении. При сложном (абсолютном) движении приращение вектора скорости (v) a:

d (v)a = d (v)o + dfi x r' + (v) r*dtau,

следовательно, абсолютная скорость (v) a есть сумма переносной (v) e и относительной (v) r скоростей:

(v)a = (v) o + omega x r' + (v) r = (v) e + (v) r . (3.3)

Приращение вектора ускорения при сложном движении:

d (w)a = d (w)o + d (omega x r') + dfi x (v) r + (w) r*dtau ;

d (omega x r') = eps x r' + omega x omega x r' + omega x (v) r ;

dfi x (v) r = omega x (v) r

Таким образом, ускорение при сложном движении

(w)a = (w) o + eps x r' + omega x omega x r' + 2*omega x (v) r + (w) r. (3.4)

Составляющие абсолютного ускорения:

(w)e = (w) o + eps x r' + omega x omega x r' - переносное ускорение;

(w)k = 2*omega x (v) r - ускорение Кориолиса;

(w)r - относительное ускорение

3.3. Аксоидные поверхности

3.3.1. Мгновенные оси и аксоидные поверхности. Сложное движение звена можно представить последовательностью мгновенных поворотов вокруг мгновенных осей, меняющих свое положение в пространстве (рис.3.4) . Последовательные положения мгновенных осей в системах координат K (неподвижной) и K' (подвижной) образуют две аксоидные поверхности - неподвижную и подвижную, в каждый момент времени контактирующие друг с другом по прямой линии - мгновенной оси. В общем случае аксоиды катятся друг по другу со скольжением. Формы аксоидных поверхностей определяются видами переносного и относительного движений

3.3.2. Гиперболоидные аксоиды. Переносное движение совершается вокруг оси omega1, относительное - вокруг оси omega2, оси скрещиваются под углом Sigma (рис. 3.5 и 3.6) . Мгновенная ось - Omega, вдоль нее

аксоиды проскальзывают со скоростью v . Расстояние O1O2 = a, углы delta1

и delta2 определяют по формулам:

a = (v/Omega) [ (1+ 2i*cos (Sigma) + i**2) / (i*sin (Sigma) )], (3.5)

где Omega = omega1 + omega2 ; i = omega1/omega2 ;

O1P/O2P = 1/ (i*cos (Sigma) = (omega2/omega1) /cos (Sigma) ; (3.6)

delta1 = arc tg [sin (Sigma) / (i*cos (Sigma) ] ;

delta2 = Sigma - delta1 . (3.7)

3.3.3. Конические аксоиды. Оси вращательных движений пересекаются, аксоиды перекатываются друг по другу без скольжения (рис. 3.7)

Углы при вершинах конусов delta1 и delta2 определяют по формулам (3.7)

3.3.4. Цилиндрические аксоиды. Оси вращательных движений параллельны (рис. 3.8, а - при одинаковых знаках omega1 и omega2, б - при разных) . Цилиндры катятся друг по другу без скольжения; положение мгновенной оси определяют по формуле (3.6) при Sigma = 0:

O1P/O2P = omega2/omega1 . (3.8)

3.3.5. Сложение поступательных движений (рис.3.9) . Поверхность неподвижного аксоида вырождается в траекторию перемещения центра подвижной системы координат K', в которой звено движется поступательно

3.4. Мгновенные центры скоростей и ускорений

3.4.1. Мгновенный центр скоростей в плоском движении звена точка, линейная скорость которой в данный момент равна нулю. Для плоского движения - это проекция мгновенной оси на плоскость движения (рис. 3.10)

Для точек звена выполняется условие

(v)a/AP = (v) b/BP = ... = omega, (3.9)

где omega - угловaя скорость звена; P - мгновенный центр

При плоском движении аксоиды проецируются на плоскость в виде центроида - геометрических мест мгновенных центров скоростей

3.4.2. Мгновенный центр ускорений в плоском движении - точка, линейное ускорение которой в данный момент равно нулю

Из (3.2) для любой точки звена (рис. 3.11) следует:

(w)a/AQ = (w) b/BQ = ... = [eps**2 + omega**4]**0.5,

где eps - угловое ускорение звена; Q - мгновенный центр.

Направление на мгновенный центр ускорений определяется углом между векторами нормального (w) n и полного w ускорений

Глава 4. КИНЕМАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ МЕХАНИЗМОВ

4.1. Кинематические характеристики механизмов

4.1.1. Кинематические характеристики - зависимости, связывающие в М положения, скорости и ускорения ведущего звена с соответствующими параметрами ведомого. Эти функции полностью определяются структурой и геометрическими параметрами М

4.1.2. Функция положения М - зависимость положения ведомого звена от положения ведущего. В общем виде для М (рис. 4.1) :

fin = П (fi1) . (4.1)

4.1.3. Функция скорости М - связь скоростей ведомого звена omegan и ведущего omega1 - производная функции положения:

dfin/dtau = d[П (fi1) ]/dtau = {d[П (fi1) ]/dfi1}* (dfi1/dtau),

d[П (fi1) ]/dfi1= П' (fi1) = omegan/omega1 . (4.2)

Передаточное отношение - величина, обратная функции скорости:

(i)1n = omega1/omegan = 1/П' (fi1) . (4.3)

4.1.4. Функция ускорения М - связь ускорений ведомого звена epsn и ведущего eps1 - вторая производная функции положения:

d2fin/dtau2 = d|{d[П (fi1) ]/dtau}* (dfi1/dtau) |/dtau =

= П'' (fi1) * (dfi1/dtau) **2 + П' (fi1) * (d2fi1/dtau2) =

= П'' (fi1) **omega1**2 + П' (fi1) *eps1 ;

Если принять eps1 = 0, то

П'' (fi1) = d2[П (fi1) ]/dfi12 = epsn/omega1**2 . (4.4)

Следовательно, функция ускорения определяет ускорение ведомого звена М при постоянной скорости ведущего



4.2. Методы определения кинематических характеристик

4.2.1. Метод векторного замкнутого контура. Сущность этого аналитического метода: звенья М представляют векторами, которые должны образовать замкнутый контур, т.е. сумма проекций звеньев- векторов на оси произвольно выбранной системы координат должна быть равна нулю

Уравнение проекций позволяет найти функцию положения, а дифференцирование ее даст функции скорости и ускорения. Для М на рис. 4.2 уравнения проекций на оси X и Z :

r*cos (fi1) + l*cos (fi2) - s = 0;

h + r*sin (fi1) - l*sin (fi2) = 0

Функция положения

dzet = s/r = cos (fi1) +

+ [ (l/r) **2 - (h/r + sin (fi1) )**2]**0.5 (4.5)

Функции скорости и ускорения:

П' (fi1) = ddzet/dfi1 = v3/ (r*omega1) ;

П'' (fi1) = d2dzet/dfi12 = w3/ (r*omega1**2)

4.2.2. Графоаналитический метод планов. Сущность его состоит в построении векторных диаграмм, изображающих скорости и ускорения М для одного его положения, т.е. получают мгновенные значения кинематических характеристик М. Исходным является план положений М - изображение М в масштабе при некотором положении ведущего звена (рис. 4.3 а)

План скоростей - графическое решение векторных уравнений, связывающих скорости абсолютного, переносного и относительного движений точек звеньев (рис. 4.3 б) . Аналогично строится план ускорений (рис. 4.3 в)

4.3. Соотношение скоростей в высших кинематических парах

4.3.1. Эти соотношения необходимо определять при анализе и синтезе сложных М с высшими парами. В таких парах звенья в общем случае катятся друг по другу со скольжением. Относительное движение звеньев можно представить, введя в рассмотрение подвижные аксоиды, жестко связанные со звеньями пары

4.3.2. Кинематическая пара с вращательным движением звеньев

Звенья вращаются вокруг осей O1 и O2, контактируя в точке K (рис. 4.4)

Чтобы определить положение мгновенной оси, условно останавливают одно из звеньев, например звено 1, придавая ему и всем остальным скорость - (omega1) . Скорость звена 2 Omega = omega2 - omega1 определит относительное движение, а скорость вращения линии O1O2 (т.е. стойки) - (omega1) - переносное. В соответствии с (3.8) мгновенная ось находится в точке Р, для которой O1P/O2P = omega2/omega1 . Профили звеньев проскальзывают со скоростью vs, которая должна определяться расстоянием до мгновенной оси: vs = Omega*KP = (omega2 - omega1) *KP. Поэтому полюс Р должен находиться на нормали, проведенной к контактирующим профилям звеньев в точке контакта К (рис. 4.4)

4.3.3. Кинематическая пара с вращательным движением одного звена и поступательным второго. Положение мгновенной оси может быть получено так же, как и в предыдущем случае: из точки контакта К проводят нормаль до пересечения с прямой, исходящей из центра O1 перпендикулярно к направлению линейной скорости v2 звена 2 (рис. 4.5)

Линейное движение можно считать вращательным вокруг бесконечно удаленного центра, поэтому O2P бесконечно велико, и omega2 = 0. Так как omega2*O2P = v2, следовательно:

O1P*omega1 = v2 . (4.6)

4.3.4. Поступательное движение обоих звеньев. Касательная (рис. 4.6) к профилям звеньев определяет углы alf1 и alf2 между скоростью скольжения vs и скоростями v1 и v2 :

v1/v2 = sin (alf2) /sin (alf1) . (4.7)



4.4. Кинематические характеристики многозвенных механизмов

4.4.1. Структура многозвенных М. Такие М состоят из соединенных друг с другом структурно-элементарных М с характерными кинематическими признаками основных кинематических пар. Схемы структурно-элементарных М с высшими парами изображены на рис. 4.7 и 4.8

4.4.2. Передаточные отношения цилиндрических, конических и гиперболоидных пар с круговой формой звеньев (рис. 4.7) определяют в соответствии с (3.8) отношением диаметров аксоидов:

i12 = omega1/omega2 = d2/d1 . (4.8)

4.4.3. Передаточное отношение многоступенчатого М с последовательным соединением цилиндрических колес (рис. 4.9) :

i12 = omega1/omega2 = dn/d1* (-1) **k, (4.9)

где k - число внешних зацеплений (здесь знак учитывает направление вращения выходного звена по отношению к входному)

Для последовательно- параллельного соединения колес (рис. 4.10) :

i12 = omega1/omega2 = [ (d2/d1) * (d4/d3) ...

... (dn/dn-1) ]* (-1) **k . (4.10)

Если в М имеются конические и гиперболоидные пары, знак не определяют

4.4.4. Передаточные отношения аксоидных М с переменными радиусами звеньев (рис. 4.11) определяют по формуле, аналогичной (4.8) :

i12 = omega1/omega2 = ro2/ro1, (4.11)

где ro1 и ro2 - текущие значения радиусов аксоидных поверхностей, при чем ro1 + ro2 = a

4.4.5. Передаточное отношение М с гибким звеном (рис. 4.12) определяют из условия равенства линейных скоростей в точках касания этого звена с основными жесткими:

i12 = omega1/omega2 = AK2/AK1 . (4.12)



Глава 5. ДИНАМИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМОВ

5.1. Задачи анализа; основные понятия и определения

Задачи динамического анализа:

а) определение усилий, действующих на звенья М при его работе, или силовой анализ;

б) определение законов движения М под действием приложенных усилий, или динамика механизма

Сила - количественная мера механического взаимодействия тел

Система сил - совокупность сил, действующих на звено. Система может быть уравновешенной, если под действием ее тело находится в равновесии. Равнодействующая - сила, заменяющая действие системы сил. Момент силы - векторное произведение радиуса-вектора точки приложения силы на саму силу (рис. 5.1) : T = (r) a x F ; плечо силы, создающей момент (расстояние до линии действия силы) : h = (r) a*sin (alfa)



5.2. Условия равновесия звеньев под действием системы сил

Звено находится в равновесии, если равнодействующая сила R0 и ее момент T0 равны нулю:

R0 = (Rx**2 + Ry**2 + Rz**2) **0.5 = 0;

T0 = (Tx**2 + Ty**2 + Tz**2) **0.5 = 0. (5.1)

Следовательно, сумма проекций всех сил, действующих на звено, а также сумма проекций моментов этих сил на каждую из координатных осей в отдельности должны равняться нулю:

sum (Fix) = sum (Fiy) = sum (Fiz) = 0;

sum (Tix) = sum (Tiy) = sum (Tiz) = 0. (5.2)

Разновидности уравнений равновесия для плоской системы:

sum (Fix) = 0; sum (Fiy) = 0; sum (Tiz) = 0;

sum (Fix) = 0; sum (Tiy) = 0; sum (Tiz) = 0; (5.3)

sum (Tix) = 0; sum (Tiy) = 0; sum (Tiz) = 0;

5.3. Характеристика усилий, действующих на звенья механизма

5.3.1. Классификация усилий. Силы и моменты, действующие на звенья М, делят на три группы:

а) внешние силовые воздействия;

б) усилия, возникающие в звеньях вследствие действия ускорений;

в) внутренние усилия в кинематических парах - реакции

5.3.2. Внешние усилия: движущие и сопротивления. Работа движущих усилий dA = F*ds положительна, сопротивлений - отрицательна (рис

5.2) . Усилия полезного сопротивления приложены к выходному звену М, движущие - к входному, ведущему

5.3.3. Силы веса. Возникают в поле тяготения, пропорциональны массе звена m и ускорению тяжести g : G = m*g . Условно приложены в центре масс - точке, в которой может сосредоточена вся масса звена, причем состояние его под действием сил не изменяется. Координаты центра масс для тела с обьемом V (рис. 5.3) :

(x)c = (1/V) *int (x*dv) V; (y) c = (1/V) *int (y*dv) V;

(z)c = (1/V) *int (z*dv) V . (5.4)

Для плоского сечения площадью S координаты центра масс:

(x)c = (1/S) *int (x*ds) S; (y) c = (1/S) *int (y*ds) S . (5.5)

5.3.4. Инерционные параметры звеньев: масса при поступательном движении и моменты инерции при вращательном - меры инерционности звеньев. Моменты инерции определяют относительно соответствующей координатной оси: Jx, Jy, Jz, или относительно какой-либо точки - Ja ; в последнем случае Ja = Jxa + Jya + Jza . Момент инерции относительно оси, проходящей через центр масс, называют главным моментом инерции

Для тела обьемом V с равномерно распределенной массой момент инерции

J = int (ro**2*dm) V, (5.6)

где ro - радиус вращения элементарной массы dm

Моменты инерции некоторых тел относительно осей, проходящих через центры масс:

- шара массой m и радиусом R:

Jc = 0.4*m*R**2 ;

- цилиндра массой m и радиусом R, относительно оси, прохо дящей через центр масс и параллельной образующей:

Jc = 0.5*m*R**2 ;

- тонкого стержня длиной L и массой m, относительно оси, проходящей через центр масс и перпендикулярной продольной оси стержня:

Jc = (m*L**2) /12

Момент инерции относительно оси, удаленной от центра масс на расстояние a (рис. 5.4) :

Ja = Jc + ma**2

5.3.5. Инерционные усилия. Возникают при действии ускорений, пропорциональны этим ускорениям и массе звена или моменту инерции.

Сила инерции: Fи = -m* (w)c, условно приложена в центре масс и пропорциональна его ускорению (w) c

Момент инерционной силы: Tи = -Jc* (eps) c, где (eps) c - угловое ускорение, Jc - момент инерции относительно центра масс

В сложном движении, представляющем сумму поступательного и вращательного, на тело действует инерционная сила Fи и момент инерционной силы Ти (рис. 5.5)

5.3.6. Реакции в кинематических парах. Взаимно уравновешенные усилия взаимодействия звеньев в подвижных соединениях. Реакцию можно представить как сумму нормальной (R) n и касательной (R) t (рис. 5.6)

Касательная - сила трения, сопротивление тангенциальному смещению поверхностей - функция нормальной силы

5.4. Краткая характеристика сил трения

5.4.1. Трение имеет двойственную молекулярно - механическую природу, зависит как от взаимодействия молекулярных структур поверхностных слоев, так и от их механического сцепления. Силы трения зависят от четырех групп факторов:

а) вида трения - скольжения или качения;

б) свойств поверхностных слоев контактирующих деталей;

в) режима трения;

г) формы поверхностей кинематической пары

5.4.2. Виды трения. Трение скольжения-процесс, при котором одни и те же зоны первой контактирующей поверхности приходят в соприкосновение с новыми зонами другой (рис. 5.7)

Углы при трении: gamma - угол давления; fit - угол трения. Коэффициент трения f = tg (fit)

Fт = (R) t = (R) n*tg (fit) = f* (R)n . (5.7)

В трущейся паре может возникнуть самоторможение, когда движение под действием внешней силы P невозможно, как бы велика она ни была, т.к. при этом P < Fт ; условие самоторможения можно записать в виде: gamma < < fit

Трение качения - процесс, при котором все новые зоны обеих контактирующих поверхностей вступают в контакт, а мгновенная ось вращения проходит через зону контакта (рис. 5.8, а) . При качении нормальная составляющая реакции сдвинута относительно нормали, проходящей через середину зоны контакта на расстояние k, которое называют коэффициентом трения качения (рис. 5.8, б)

5.4.3. Вторая группа факторов, определяющая физико-механическое и микрогеометрическое состояние контактирующих поверхностей: молекулярное строение, структура поверхностного слоя, внутренние напряжения в нем, твердость, упругость и другие механические свойства; микрорельеф, присущий каждой технической поверхности, и другие. В частности, микрорельеф, согласно ГОСТ 2789-73, описывается десятью параметрами, среди которых, кроме параметров, характеризующих высоту и шаг микронеровностей, должны быть их форма и направление "в плане"

5.4.4. Третья группа факторов - режим трения: удельное давление, относительные скорости, температура в контактных зонах, наличие или отсутствие на поверхностях трения оксидов или смазочных материалов, свойства этих третьих веществ

Коэффициенты трения скольжения и качения, учитывающие влияние первых трех групп факторов, исследованы экспериментально и приведены в справочниках, для плоских поверхностей при скольжении и для плоской и цилиндрической - при качении

5.4.4. Влияние формы контактирующих поверхностей. Учитывается введением приведенных коэффициентов трения: отношения внешних сил движущей P и сжимающей контактирующие поверхности N: f' = P/N. При наличии трения силу P находят через f' :

P = Fт = f'*N, (5.8)

где Fт - приведенная сила трения в кинематической паре

При качении

P = k*N/r = f'*N,

где f' = k/r - приведенный коэффициент трения качения



Глава 6. Методы определения реакций в кинематических парах и динамика механизма

6.1. Методы определения реакций в кинематических парах

6.1.1. Сущность метода определения реакций. Для большинства методов она сводится к составлению и решению уравнений равновесия для каждого звена, в которые реакции входят как неизвестные. Внешние силы, скорость и ускорение для всех звеньев М должны быть известны; определяют реакции и движущие усилия на ведущем звене М. Инерционные силы учитываются на основе принципа д'Аламбера: в каждое мгновение движения любое тело можно рассматривать находящимся в равновесии под действием системы сил, в которую входят и силы инерции

6.1.2. Аналитический метод определения реакций. Механизм условно расчленяют на звенья, нагружая каждое внешними усилиями, а в кинематических парах - неизвестными составляющими реакций (рис. 6.1.) . Систему уравнений равновесия для одного звена решить нельзя, так как число неизвестных больше числа уравнений, поэтому звенья обьединяют в статически определимые группы, для которых выполняется условие sum[i*p (i)] -qs =6k

Пример расчленения M на группы показан на рис. 6.2, а схема определения реакций в группе - на рис.6.3

Уравнения равновесия для обоих звеньев группы:

sum (Fix) = Rb''*cos (fi2) - Rb'*sin (fi2) - F2*cos (alf2) - F3*cos (alf3) - Rd*sin (fit) = 0;

sum (Fiy) = Rb''*sin (fi2) - Rb'*cos (fi2) - F2*sin (alf2) - F3*sin (alf3) - Rd*cos (fit) = 0;

sum (T2c) = Rb'*l2 - F2*l2s*cos (pi/2 - alf2 + fi2) - T2 = 0;

sum (T3c) = F3*l3'*cos (pi/2 - alf3 + fi3) - T3 - Rd*sin (fit) *h3y +

+ Rd*cos (fit) *h3x = 0

Решение системы позволяет найти реакции Rb, Rc и Rd и их составляющие

6.1.3. Графоаналитический метод планов сил. Уравнения статики решают графическим построением плана сил - векторной диаграммы, на которой силы представлены векторами. План сил для группы звеньев показан на рис. 6.3, в. Составляющую реакции Rb' и плечо h3x для реакции Rd находят так же, как и при аналитическом решении



6.2. Расчет сил и моментов трения

6.2.1. Силы трения - касательные составляющие реакций - находят по приведенным коэффициентам трения f' = tg (fit), если известны полные реакции в кинематических парах или их нормальные составляющие

Последовательность определения приведенных коэффициентов трения:

а) из условия равновесия находят нормальные составляющие реакций наконтактных поверхностях;

б) по известным коэффициентам трения на плоских поверхностях рассчи тывают силы трения на реальных поверхностях;

в) из условий равновесия определяют силы движущие;

г) находят приведенный коэффициент трения как отношение движущего уси лия к усилию, сжимающему поверхности звеньев в паре

6.2.2. Приведенные коэффициенты трения для кинематических пар с трением скольжения:

а) клиновидная направляющая прямолинейного движения (рис. 6.4) :

f' = f*[cos (alf1) + cos (alf2) ]/[sin (alf1 + alf2) ], (6.1)

частный случай: alf1 = alf2 = alfa, f' = f/sin (alfa) ;

б) цилиндрическая направляющая для прямолинейного или вращательногодвижения (рис.6.5) - для произвольного распределения давления по цилиндрической поверхности q = q (fi) :

f' = f{int[q (fi) *dfi]0, alfa}/{int[q (fi) *cos (fi) *dfi]0, alfa}, (6.2)

при q (fi) = q0*cos (fi) и alfa = Pi/2 f' = 4f/Pi ;

в) трение на торцовой поверхности цилиндра (рис. 6.6) :

f' = 1.333*f* (R**2 + R*r + r**2) / (R+ r) **2 ; (6.3)

г) трение в винтовой паре (рис. 6.7):

для прямоугольной резьбы:

T = 0.5*Q*d*f' ; f' = tg (gamma + fit) ; (6.4)

для трапецевидной и треугольной резьб:

f' = tg[gamma + arc tg (f/sin (alfa) )] ; (6.5)

самоторможение в винтовой паре наступает при gamma < fit; в этом случае сила Q не сможет заставить винт вращаться

6.2.3. Приведенные коэффициенты трения для кинематических пар с трением качения:

а) платформа на катках (рис. 6.8) :

f' = (k1 + k2 )/d ; (6.6)

б) подшипник качения (рис. 6.9) :

T = 0.5*Q*fs*d1; f' = beta*k* (1+ d1/d3) /d1 ; (6.7)

для реальных конструкций подшипников beta = 1.4 - 1.6



6.3. Коэффициенты полезного действия механизмов

6.3.1. Коэффициент полезного действия - отношение полезной мощности на выходе Nn к мощности движущего усилия на входе Nд : eta = Nn/Nд . Характеризует совершенство M и потери в нем, которые происходят за счет сил трения Nт = Nд - Nn :

eta = 1 - Nт/Nд . (6.8)

Мощности потерь в кинематических парах: поступательной Nт = Fт*vs, вращательной Nт = Tт*omegas ; vs и omegas - относительные скорости звеньев

Сложный M можно представить как соединение более простых и КПД определять по КПД простых M, входящих в сложный

6.3.2. КПД при последовательном соединении простых M (рис. 6.10, а) :

eta1m = Nnm/Nд = eta1*eta2...etam . (6.9)

В такой цепи общий КПД меньше минимального частного КПД

6.3.3. КПД при параллельном соединении простых M (рис.6.10, б) :

eta1m = Nnsum/Nд = k1*eta1 + k2*eta2 + ... + km*etam, (6.10)

где k1, k2, ... km -коэффициенты, показывающие, какая часть общей мощности подведена к каждому простому M ; k1 + k2 + ... + km = 1

В такой цепи общий КПД определяется в основном частным КПД M, через который проходит наибольшая мощность

6.3.4. КПД при параллельно-последовательном соединении M (рис. 6.10, в) :

eta = k1*eta1m*eta2m...+ k2*eta1n*eta2n...etann +...

...+ kp*eta1p*eta2p...etapp, (6.11)

где коэффициенты ki учитывают распределение мощности по цепям;

etaij - частные КПД простых M

6.4. Определение закона движения механизма

6.4.1. Динамика - раздел динамического анализа, посвященный определению законов движения звеньев M. Закон движения - зависимость кинематических параметров от времени:

s = s (tau) ; v = v (tau) ; w = w (tau) ;

fi = fi (tau) ; omega = omega (tau) ; eps=eps (tau) ; (6.12)

где s, v, w - линейные, fi, omega, eps - угловые параметры движения

Сущность метода определение законов движения звеньев и всего M сводится к интегрированию дифференциальных уравнений

F = m* (d2s/dtau2) или T = J* (d2fi/dtau2), являющихся выражением второго закона механики (закона Ньютона)

Особенность определения законов движения звеньев:

а) многочисленность звеньев в сложных M, поэтому для каждого звена могут быть свои законы движения;

б/ связанность звеньев и следовательно, их движений

6.4.2. Определение закона движения звена приведения. Чтобы оперировать минимальным числом параметров, в механизме выделяют звено приведения - какое-либо из звеньев, характер движения которого простейший: движение это прямолинейное или вращательное. Влияние массовых характеристик остальных звеньев и действующих на них усилий учитывают с помощью приведенных параметров, значения которых определяют из условий энергетической эквивалентности звена приведения и всего М. Это значит, что энергия и характер ее изменения для звена приведения и для всего M в каждый момент времени одинаковы

6.4.3. Приведенные массовые характеристики. При поступательном движении звена приведения со скоростью (v) пр приведенную массу (m) пр находят из условия равенства кинематических энергий звена и всего M, в котором массы mi совершают поступательные движения со скоростями vi, а моменты инерции Jk - вращательные со скоростями omegak :

(m)пр = sum{ mi*[vi/ (v)пр]**2 } + sum{ Jk*[omegak/ (v)пр]**2 }. (6.13)

Соотношения vi/ (v)пр и omegak/ (v)пр представляют собой функции скорости для звеньев M, определенные по отношению к звену приведения, поэтому приведенная масса - переменная величина, определяемая функцией положения M - формой и размерами звеньев и их взаимными положениями

Если звено приведения вращается со скоростью (omega) пр, оно должно обладать приведенным моментом инерции

(J)пр = sum{ mi*[vi/ (omega) пр]**2 } +

+ sum{ Jk*[omegak/ (omega) пр]**2 }, (6.14)

который также определяется функцией положения

6.4.4. Приведенные силовые характеристики. Это - приведенная сила и приведенный момент, определяемый из условий равенства мощностей на звене приведения и во всем M . Приведенная сила

(F)пр = sum{ Fi*[vi/ (v)пр]**2 } + sum{ Tk*[omegak/ (v)пр]**2 }; (6.15)

приведенный момент

(T)пр = sum{ Fi*[vi/ (omega) пр]**2 } +

+ sum{ Tk*[omegak/ (omega) пр]**2 }; (6.16)

6.4.5. Уравнение движения звена приведения. Может быть получено из условия эквивалентности изменения энергии и работы на некотором элементарном перемещении (обычно учитывают только кинетическую энергию E подвижных звеньев) :

dA = dE = T*dfi ; dA = dE = F*ds,

где dA - элементарная работа на элементарном перемещении dfi или ds,

T - момент движущих сил, F - движущая сила

Для звена приведения (при вращательном движении) :

d[ (E)пр]/d (fi) пр = (T) пр = d[ (J)пр* (omega) пр**2/2]/d (fi) пр

Приведенный момент инерции (J) пр зависит от (fi) пр, поэтому

d[ (E)пр]/d (fi) пр = 0.5*{ d (J)пр/d (fi) пр* (omega) пр**2 } +

+ (J) пр* (omega) пр*d (omega) пр/d (fi) пр =

= 0.5*{ d (J)пр/d (fi) пр* (omega) пр**2 } +

+ (J) пр*[d (omega) пр/dtau]

Момент приведенной силы (T) пр представляют как сумму движущего момента (T) д и момента сил сопротивления (T) с :

(J)пр*[d2 (fi) пр/dtau2] + 0.5*{ d (J)пр/d (fi) пр* (omega) пр**2 } =

= [ (T)д + (T) с]пр . (6.17)

Это - уравнение движения M в форме моментов - для вращательного движения приведенного звена. Соответствующее выражение для поступательного движения - уравнение движения в форме сил:

(m)пр*[d2 (s)пр/dtau2] + 0.5*{ d (m)пр/d (s)пр) * (v)пр**2 } =

= [ (F)д + (F) с]пр . (6.18)

Уравнения (6.17) и (6.18) могут быть проинтегрированы, если известны конкретные выражения для массовых и силовых приведенных характеристик

6.4.6. Законы движения остальных звеньев. Могут быть определены, если уравнения движения решены и для звена приведения получены зависимости типа (6.12) ; с помощью кинематических характеристик - функций положения, скорости и ускорения для М осуществляют переход к кинематическим параметрам, и, следовательно, к законам движения всех звеньев



6.5. Колебательные процессы в М

6.5.1. Периодические силы возникают в М как результат вращательного движения звеньев вокруг осей, не проходящих через центр масс. В подобных случаях инерционную силу (F) и = m*r*omega**2 ( рис. 6.11 ) можно представить в виде суммы двух составляющих Fx = (F) и*sin (fi) и Fz =(F) и*cos (fi), и если omega = d (fi) /dtau, то Fx и Fz будут периодическими силами . Воздействия таких сил приводят к возникновению в механических системах колебательных (вибрационных) процессов

6.5.2. Параметры колебательных процессов процессов получают, рассматривая движение физического тела относительно осей выбранной неподвижной системы координат. Тело массой m связано упругими связями с основанием, которое может быть неподвижно, и в этом случае колебательное движение вызывается непосредственным воздействием периодической силы на тело (силовое возбуждение), или само основание может периодически смещаться и передавать силовое воздействие на тело через упругую связь (кинематическое возбуждение) . Расчетные схемы приведены на рис. 6.12, а уравнение движения тела, в соответствии с (6.18) :

m*x" = F (tau) - Fс, (6.19)

где F (tau) - внешняя периодическая сила, Fc - сила сопротивления,

x" - линейное ускорение при движенни вдоль оси x

6.5.3. Движение при однократном первоначальном импульсе силы F и силе упругого сопротивления, пропорциональной смещению: Fc = k*x:

уравнение движения: m*x" + kx = 0, а его решение:

x = a0*cos (omega0*tau + fi0), (6.20)

где omega0 = (k/m) **0.5 - частота собственных колебаний массы m, установленной на упругой связи с коэффициентом жесткости k;

a0 - амплитуда смещения от положения равновесия, fi0 - началь ный фазовый угол колебаний

Таким образом, тело совершает гармонические колебания с периодом T0 = 2*pi/omega0

6.5.4. Затухающие колебания при сухом трении, сила сопротивления которого в первом приближении может считаться постоянной: Fт = const

В этом случае Fc = k*x + Fт, и решение уравнения (6.19)

x = a0 + (a0 - aт) *cos (omega0*tau), (6.21)

где aт = Fт/ (m*omega0**2) - так называемая мертвая зона, в преде лах которой колебания невозможны

График колебательного процесса показан на рис. 6.13, колебания линейно затухают, так что разность двух соседних амплитуд a (i)-a (i+1) = 2*aт

6.5.5. Затухающие колебания при вязком трении, сила сопротивления которого пропорциональна скорости смещения x' (в густой вязкой жидкости) : Fc = b*x' + kx . Решение уравнения (6.19) - амплитуда экспоненциально затухающих собственных колебаний

x = a*exp (-del*tau) *cos (omega1*tau + fi1), (6.22)

где del = 0.5*b/m - коэффициент затухания; omega1 = (omega0**2 - del**2) - частота собственных колебаний при вязком сопротив лении среды

Затухающие колебания происходят с периодом T1 = 2*pi/omega1, и характеризуются логарифмическим декрементом затухания Lam = ln[a (i)/a (i+1) ] = del*T1

6.5.6. Силовое возбуждение действием силы F (tau) = F0*sin (omega* tau) при вязком сопротивлении. Уравнение колебаний :

m*x" + b*x' + k*x = F0*sin (omega*tau)

имеет решение, представляющее амплитуду колебаний как сумму двух составляющих - собственных затухающих колебаний (x) с, определяемых формулой (6.22), и вынужденных от действия внешней периодической силы F (tau) с частотой этой силы omega :

(x)в = (x) д*cos (omega*tau + fi), (6.23)

где (x) д - динамическая амплитуда вынужденных колебаний, отличающая ся от статической (x) ст = F0/k, определяемой амплитудным значе нием F0 внешней возбуждающей силы

Соотношение (x) д/ (x)ст = kappa - коэффициент динамического усиления, определяется коэффициентом расстройки nju = omega/omega0 (соотношением частот внешней возбуждающей силы и собственных колебаний) и коэффициентом демпфирования (рассеяния энергии) в системе D = del/omega0:

kappa = 1 /[ (1- nju**2) **2 + 4* (D*nju) **2]**0.5 . (6.24)

Фазовый угол fi = arc tg[2*D*nju/ (1- nju**2) ]

Таким образом, чем ближе частота внешней силы к частоте собственных колебаний и чем меньше коэффициент демпфирования, тем сильнее растет амплитуда колебаний; наибольшее увеличение амплитуды будет в резонансной зоне, т.е. когда коэффициент расстройки близок к единице. Характер колебательного процесса представлен на рис. 6.15

Амплитуда вынужденных колебаний (x) д = kappa* (x)ст

6.5.7. Кинематическое возбуждение смещением основания (x) a =a*sin (omega*tau) при вязком сопротивлении. Уравнение колебаний можно представить в виде

m*x" + b*[x'- (x) a]+ k*[x - (x) a] = 0,

и тогда оно имеет решение, соответствующее (6.23), но (x) д = eta* (x)a, где eta - коэффициент передачи :

eta = {[1 + 4* (D*nju) **2]**0.5}/[ (1- nju**2) **2 +

+ 4* (D*nju) **2]**0.5 . (6.25)

Характер колебательного процесса представлен на рис. 6.16. При nju > (2) **0.5 амплитуда вынужденных колебаний меньше, чем амплитуда возбуждающих, т.е. это - область виброзащиты


следующая страница >>
Смотрите также:
Механизмы и несущие конструкции радиоэлектронных средств
615.12kb.
3 стр.
Вопросы к экзамену по дисциплине «Физические основы проектирования радиоэлектронных средств»
47.88kb.
1 стр.
Учебное пособие «Основы конструирования и технологии радиоэлектронных средств»
57.33kb.
1 стр.
Программа кандидатского экзамена по специальности 05. 23. 01 «Строительные конструкции, здания и сооружения» по техническим наукам
72.04kb.
1 стр.
О порядке выдачи разрешений на ввоз в российскую федерацию радиоэлектронных средств
184.73kb.
1 стр.
Классификация сапр в зависимости от отраслевого назначения выделяют: mcad
27.43kb.
1 стр.
Карен Прайор Несущие ветер
3423.88kb.
14 стр.
Кафедра радиоэлектронных средств Ответы на часто задаваемые вопросы
237.19kb.
1 стр.
Программа дисциплины «Математика. Уравнения математической физики»
99.84kb.
1 стр.
Вошло в состав Министерства среднего машиностроения в последующем преобразованное в
40.89kb.
1 стр.
«МегаФон» дважды возглавил антирейтинг Управления Роскомнадзора по рт казань, 3 октября, «Татар-информ»
15.54kb.
1 стр.
Новые конструкции полупроводниковых лазеров
80.03kb.
1 стр.