Главная
страница 1 ... страница 2страница 3страница 4страница 5страница 6 ... страница 8страница 9

3.4 Выбор вида шихтовых материалов и способа их подготовки к плавке

При производстве ферросплавов возникает необходимость в переработке больших масс шихтовых материалов, качество которых в значительной степени определяет технико–экономические показатели технологического процесса.

3.4.1 Шихтовые материалы. Сырье, применяемое для получения ферросплавов, состоит из четырех основных групп:

- рудный материал;

- восстановитель;

- осадитель или разбавитель;

- шлакообразующий.

3.4.1.1 Рудная часть шихты. Как правило, ферросплавные заводы используют руды и концентраты, не требующие дополнительного обогащения. Исключение составляют бедные марганцевые и реже хромовые руды. Их подвергают пирометаллургическому обогащению и получают богатые по содержанию ведущего элемента шлаки, которые затем перерабатывают в конечную продукцию. Основным критерием при оценке качества руд является содержание в них ведущего элемента; оно должно быть максимально высоким. Следует, однако, учитывать, что запасы богатых руд истощаются, и поэтому в ферросплавном производстве используются более бедные руды. Так, если в 50-х г. стандартное содержание марганца в марганцевых концентратах составляло 48-50 %, то в настоящее время оно снизилось до 40-46 %.

Ценность руды повышается с уменьшением в ней содержания вредных примесей, в первую очередь серы и фосфора. От концентрации вредных примесей зависит технология передела. Например, марганцевые руды с повышенным фосфором должны подвергаться предварительной дефосфорации методом выплавки малофосфористого шлака или другим методом, что удорожает передел.

Существенную роль при выборе руды играет ее фракционный состав, который часто определяет технико–экономические показатели производства. Пылеватые руды и концентраты нельзя загружать непосредственно в печь без принятия специальных мер, предупреждающих вынос мелких частиц, который может достигать 15 % и более от количества заданной руды. К числу таких мер относится в первую очередь предварительное окомкование различными методами (агломерация, брикетирование, окатывание). Оптимальные размеры кусков руды зависят от сорта руды, типа печи и способа производства. Для бесшлаковых и шлаковых процессов в закрытых рудовосстано-вительных печах, как правило, нужны более крупные куски руды, чем для большинства рафинировочных процессов.

Чтобы обеспечить стабильность технологического процесса, нужную сортировку руды по фракциям и усреднение по химическому составу, а также, в случае необходимости, дробление и окомкование руды следует производить на механизированных складах достаточной вместимости.

3.4.1.2 Восстановители. Правильный выбор восстановителя и способа его подготовки в значительной мере определяет технико-экономические показатели производства. При выплавке ферросплавов в качестве восстанови­телей оксидов руды используют углерод, кремний и алюминий. Наиболее широко применяются углеродсодержащие восстановители: металлургический кокс, различные полукоксы и угли, древесные отходы и др. Углеродо-содержащие восстановители, применяемые в производстве ферросплавов, должны обладать хорошей реакционной способностью, высоким удельным электросопротивлением, соответствующим для каждого сплава химическим составом, достаточной прочностью, оптимальным размером куска, термоустойчивостью и низкой стоимостью. В случае высокой реакционной способности восстановителя процесс начинается при более низких температурах и руда восстанавливается полнее. Значительное электросопротивление восстановителя обеспечивает более глубокую посадку электродов в шихте, т.е. уменьшение улета восстановленных элементов. Необходимо, чтобы количество вредных примесей в составе золы восстановителя было минимальным, так как они в значительной мере переходят в готовый сплав. Восстановитель должен обладать соответствующей механической прочностью, чтобы при подготовке, дозировании и подаче шихты образовывалось минимальное количество мелочи, поэтому небольшое содержание мелочи и летучих, отсутствие склонности к спеканию обеспечивают хорошее газовыделение на колошнике печи и облегчают обслуживание печи.

Наиболее широко используют при выплавке ферросплавов самый дешевый сорт восстановителя – коксик, получающийся при сортировке доменного кокса. Недостатками коксика являются невысокие электросопротивление и реакционная способность, относительно большое содержание золы, серы и фосфора и значительное нестабильное содержание влаги.

В качестве восстановителя при производстве ферросплавов широко применяется также полукокс. Электросопротивление последнего при температурах до 900 °С значительно больше, чем коксика, а при более высоких температурах оно приближается к электросопротивлению обычного кокса. Полукокс содержит до 15 % летучих, механически мало прочен, имеет повышенную зольность, но это не препятствует его использованию при выплавке ферросилиция, так как основной составляющей золы является кремнезем.

К очень хорошим восстановителям относится древесный уголь, обладающий высокими удельным электросопротивлением, реакционной способностью и чистотой. Древесный уголь уменьшает спекание шихты и улучшает ее газопроницаемость, что особенно важно при выплавке высококремнистых марок ферросилиция и при работе закрытых печей. Однако он дорог, имеет малую по сравнению с коксом механическую прочность, характеризуется резкими колебаниями содержания золы и влаги (от 5 до 40 %). Поэтому его стремятся заменять различными древесными отходами (опилки, щепа, стружка, лигнин).

Хорошими по качеству восстановителями являются нефтяной и пековый коксы, обладающие достаточной механической прочностью, высокой реакционной способностью и низким содержанием золы и летучих. Однако при температурах плавки они склонны к графитации, что ухудшает их реакционную способность и снижает электросопротивление. Это в сочетании с высокой стоимостью ограничивает их применение: они используются только при производстве особо чистых по примесям ферросплавов, ряда марок ферросилиция и ферровольфрама.

За рубежом в качестве углеродистого восстановителя успешно применяют торфяные брикеты и торфяной кокс, характеризующиеся высокими реакционной способностью, пористостью, чистотой и низкой электропроводностью; широко используют также каменный уголь. Целесообразно употреблять угли более малозольные (антрацит) или с соответствующим составом золы. Молодые (газовые, длинно-пламенные) и бурые угли являются наиболее реакционно-способными, дешевыми и обладают высоким электросопротивлением. Они не коксуются и недефицитны. Эти угли наиболее подходят для использования в ферросплавном производстве.

В последние годы были созданы и опробованы новые специальные виды углеродистых восстановителей для ферросплавного производства: коксы из газовых и бурых углей, формованный кокс, углекварцитовый кокс, различные виды полукоксов и др.

3.4.1.3 Осадители и разбавители. Основным железосодержащим компонентом шихты при выплавке сплавов кремния является стружка углеродистых сталей. Чугунная стружка из–за повышенного содержания в ней фосфора применяется лишь при выплавке сплавов, используемых в чугунолитейном производстве. Недопустимо употреблять стружку легированных сталей и стружку, загрязненную примесями цветных металлов. Нецелесообразно использовать железную руду взамен стружки, поскольку при этом увеличивается содержание углерода в шихте и вносится значительное количество шлакообразующих примесей.

Перспективным железосодержащим материалом для ферросплавного производства являются окалина и отходы, получающиеся в процессе огневой зачистки металла в прокатных цехах. При высоком содержании железа они имеют хороший гранулометрический состав, позволяющий добиться равномерного распределения железа в шихте.

В связи с дефицитом стальной стружки и значительными затратами на ее перевозку, может стать целесообразным исполь-зование железистых кварцитов в случае, если экономия на стоимости сырья и транспортных расходах будет больше, чем убытки от увеличения затрат электроэнергии и снижения производительности печей. Запасы железистых кварцитов составляют около 35 % балансовых запасов железных руд. Брикеты и окатыши из «хвостов», образующихся при обогащении железистых кварцитов (12-15 % Feобщ, 60-67 % SiO2), и газового угля могут быть использованы при выплавке ферросилиция. Металлизованные окатыши были успеш­но опробованы как железосодержащий материал при выплавке 75 %-го ферросилиция.

3.4.1.4 Шлакообразующие. В качестве шлакообразующей присадки в ферросплавном производстве используются известь, плавиковый шпат, реже кварцит и бокситы. Известь должна содержать более 90 % СаО и минимальное количество углерода и фосфора. Лучшей по качеству является известь, полученная обжигом известняка во вращающихся трубчатых печах. В шахтных печах получают крупнокусковую известь. Плавиковый шпат должен содержать не менее 65 % СаF2. В отдельных случаях применяют флюоритовую руду (более 55 % CaF2). В кварцитовой мелочи и боксите, используемых в качестве флюсов, концентрация вредных примесей должна быть минимальной.


3.5 Подготовка шихтовых материалов

Поступающий на ферросплавный завод рудный материал складируется и обязательно усредняется перед подачей в печные бункера для обеспечения стабильности состава. В случае необходимости материал рассеивается и измельчается или, наоборот, окусковывается, а затем подвергается сушке или прокаливанию.

Подготовка кварцита к плавке состоит из дробления на щековых или конусных дробилках, отсева мелочи (менее 20-25 мм) и мойки. Последние две операции осуществляются одновременно на вибрационных грохотах и во вращающихся барабанах. Оптимальная фракция кварцита зависит от марки ферросилиция. Так, для 25 %-го сплава принят размер кусков 20-60 мм, для 45 %-го – 20-70, для 75 и 90 %-го – 20-80 мм. При мойке кварцита концентрация в нем глинозема снижается на 20-30 %, что позволяет уменьшить содержание алюминия в сплаве и количество образующегося шлака. При подготовке кварцита его потери в виде отходов составляют 15 %.

Углеродсодержащий восстановитель (коксик, полукокс) подвергается грохочению для отсева мелочи (менее 5 мм) и крупной фракции, которая дробится на валковых дробилках. После дробления коксик вновь отсевается на вибрационных грохотах. В шихту используют куски восстановителя размером до 25 мм.

В последнее время часть углеродсодержащего восстановителя при плавке ферросилиция заменяют отходами, содержащими SiC. Применение этих отходов особо эффективно при изготовлении бедных по кремнию марок ферросилиция. Отходы графитизации производства электродов (около 28 % SiC, 19 % Si02, 49 % С, остаток Fe, A12O3 и др.) и карборунда (около 63 % SiC, 22 % SiO2, 9 % С, остаток Fe, A12O3 и др.) нуждаются в обогащении и окомковании.

Сокращение запасов богатых марганцевых руд обусловило необходимость вовлечения в производство марганцевых ферро-сплавов бедных руд. При обычных методах обогащения марганцевых руд на горно-обогатительных комбинатах фосфор только перераспределяется между товарными сортами концентратов, в результате чего в более богатых сортах отношение Р/Mn получается ниже, чем в сырой руде, и образуются низкосортные концентраты. Поэтому в настоящее время разрабатываются новые методы дефосфорации и обескремнивания марганцевых руд: химический, пирогидрометаллургический и др.

Химические и пирогидрометаллургические методы обогащения дают возможность получать богатые марганцевые концентраты высокой чистоты даже из низкосортных руд и шламов. Однако использование указанных методов сопряжено с большими затратами, а высокая степень очистки не всегда необходима для производства ферросплавов, к тому же в этом случае получаются тонко-измельченные концентраты, что требует их окускования.

Задача окускования марганцевых руд может быть решена путем их агломерации, брикетирования и окомкования. Следует, однако, иметь в виду, что агломерация в два раза дешевле, чем брикетирование и окомкование. Агломерацию руд целесообразно осуществлять непосредственно на ферросплавном заводе, что позволит сократить потери сырья при транспортировке. Весьма эффективным является предварительный нагрев и восста­новление марганцевых руд во вращающихся печах.

Проблема окускования хромовых руд может быть решена путем их брикетирования и окомкования. В этом случае эффективно предварительное восстановление хромовой руды в кипящем слое.

Окускование шихты весьма перспективно и для плавки ферросилиция. Успешно опробована выплавка ферросилиция на брикетах, песчано–рудном агломерате.

В заключение следует отметить, что выбор вида шихтовых материалов и метода их подготовки к плавке должен быть сделан на основе экономического анализа конкретных условий организации производства ферросплавов в данном районе.
3.6 Выбор способа разливки и разделки ферросплавов

В настоящее время в практике ферросплавного производства нашли наибольшее применение следующие способы разливки: на разливочных машинах различного типа; в стационарные поддоны и изложницы; послойно в напольные изложницы или в канаву методом «плавка на плавку».

Наиболее перспективной считается разливка ферросплавов на ленточных конвейерных машинах. Они применяются для разливки ферросилиция, силикомарганца, углеродистого ферромарганца и иногда углеродистого феррохрома. При этом значительно повышается механизация и производительность труда, улучшаются его условия в разливочном пролете, поскольку сплавы разливают не с помощью крана, а на специальных гидравлических кантователях, которые помещены в герметизированные камеры. Существенным недостатком машины конвейерного типа является переменная высота падения сплава при разливке, что вызывает сильное его разбрызгивание. Потери металла при разливке достигают 3 %, к тому же товарный вид получаемых слитков значительно ухудшается из-за опрыскивания мульд известковым молоком.

Для разливки высококремнистых сплавов, модификаторов и лигатур, а также сплавов, содержащих легкоокисляющиеся элементы, применяют карусельные машины конвейерно-тележечного типа (рисунок 3.6). По сравнению с конвейерной эта машина обеспечивает уменьшение потерь металла при разливке, улучшение качества и товарного вида слитков. Машина представляет собой замкнутую цепь тележек, размещенных на рельсовом пути. На тележках находятся поддоны–изложницы, обеспечивающие получение тонких слитков.

Для извлечения слитков изложницы либо переворачиваются, либо слитки выталкиваются специальным толкателем в короб, установленный под изложницей. Разливка в стационарные поддоны и чугунные изложницы представляет собой устаревший и малопроизводительный способ разливки ферросплавов, оставшийся в основном в цехах с рафинировочными печами и металлотермических цехах. Этот способ связан с повышенной загруженностью разливоч-ных кранов, высокой теплонапряженностью в цехе и необходимостью увеличения его площади для размещения стационарных изложниц. Однако, сплавы склонные к сегрегации (ферросилиций с содержанием >75 % Si), целесообразно разливать в массивные поддоны толщиной слитка до 80 мм. или в кристаллизаторы.

1 – ковш с кантователем; 2 – изложница; 3 – приемный бункер
Рисунок 3.6 – Карусельная разливочная машина.
В последние годы все более широкое распространение получает послойная разливка методом «плавка на плавку» (рисунок 3.7). За рубежом этот способ применяется при разливке марганцевых сплавов. Сплав разливают из ковша послойно в широкие канавы, расположенные вне цеха вдоль стены разливочного пролета. Послойная разливка позволяет резко снизить загруженность кранов разливочного пролета, тепловыделения в цехе, уменьшить размеры здания цеха. В этом случае разливочный пролет используют только для транспортировки сплава и шлака из цеха. Учитывая, что мощность ферросплавных печей постоянно растет, представляется рациональным вынести разливку сплава из плавильного корпуса.

При разливке ферросплавов важное значение имеет способ отделения металла от шлака. За рубежом имеются печи с раздельным выпуском сплава и шлака через две летки. В случае печей с одной леткой продукты плавки выпускают из печи в ковш с переливом шлака через верх ковша или через шлакоотделительное устройство (скиммер).



1 – тележка приводная с ковшом; 2 – чаша железобетонная; 3 – аспирационная установка
Рисунок 3.7 – Установка для напольной разливки ферросилиция
При выпуске в ковш с переливом легче регулировать параметры струи жидкого металла, металл получается чище и плотнее. Однако в этом случае необходимы достаточная площадь для разливочного участка, мостовые краны большой грузоподъемности, ковшовые тележки, что связано со значительными капиталовложениями.

При использовании скиммера, который может быть стационарным или передвижным, отпадает необходимость в кранах большой грузоподъемности, дополнительные площади нужны только для размещения скиммера и довольно длинных желобов; металл за скиммером может быть направлен непосредственно в изложницы разливочной машины. Однако при этом возможно загрязнение шлаком и образование в выпускных желобах избыточного количества скрапа, идущего в отвал. Следует отметить, что в случае разливки сплава по желобам из печи через скиммер в разливочный пролет упрощается компоновочное решение цеха, появляется возможность сократить ширину здания.

Практика показывает, что выпуск через ковш обязателен, если сплав в дальнейшем идет на рафинирование или его для разливки следует удалить от печи на некоторое расстояние. За рубежом выпуск через ковш применяют для кремнистых сплавов, а через скиммер – для сплавов марганца. Вопрос о том, какой способ выпуска сплавов, через ковш или через скиммер, предпочтительнее, решается отдельно в каждом конкретном случае.

Рисунок 3.8 – Схема фракционирования ферросплавов на отечественном ДСК
Разделка ферросплавов с целью получения требуемого размера кусков включает такие операции, как дробление и рассев (рисунок 3.8 и 3.9). Выбор типа дробилки зависит от прочности ферросплава. За рубежом изготавливают только фракционированные ферросплавы, т.е. сортированные на куски различной крупности. Производство фракционированных ферросплавов предусмотрено и отечественными стандартами. Использование сплавов определенного гранулометри-ческого состава в сталеплавильном производстве способствует быстрому усвоению легирующих элементов жидкой сталью, уменьшению теплопотерь металла в ковше.

Рисунок 3.9 – Схема фракционирования ферросплавов на ДСК фирмы KUE–KEN
Ферросплавы поставляют в кусковом (более 10 мм.), зернистом (10-2 мм.) и порошкообразном (2-0 мм.) виде. Порошки получают как измельчением сплава в дробилках, так и распылением его в жидком состоянии паром или инертным газом (грануляция). Развитие грануляции связано с увеличением спроса на ферросплавы небольшой крупности, которые могут непрерывно загружаться в сталеплавильные агрегаты.
3.7 Выбор способа утилизации отвальных шлаков ферросплав-ного производства

Производство ферросплавов сопровождается образованием значительного количества отвальных шлаков. Кратность шлака (отношение массы шлака к массе металла) зависит от вида сплава и составляет:

- при выплавке ферросилиция – 0,05-0,1 (бесшлаковый процесс);

- силикомарганца – 1,1-1,3;

- высокоуглеродистого ферромарганца (флюсовый способ) – 1,2-1,6;

- металлического марганца – 3-3,6;

- высокоуглеродистого и передельного феррохрома – 0,9-1,1;

- рафинированного феррохрома – 2,5-3,2;

- силикокальция – 0,2-0,4;

- ферромолибдена – 1-1,1;

- ферровольфрама – 0,5-0,7.

Ферросплавные шлаки содержат корольки готового сплава и невосстановленные оксиды ведущих элементов сплавов. К тому же они обладают прочностью, абразивностью, огнеупорностью. Общий выход ферросплавных шлаков составляет более 1,5 млн. тонн в год. Перерабатывают в настоящее время около 45 % этих шлаков.

Способы переработки ферросплавных шлаков весьма разнообразны (металлургический передел, воздушная и магнитная сепарация, механическое измельчение, водная грануляция и др.), их выбор определяется особенностями шлака.

Отвальные шлаки при производстве ферросилиция содержат до 30-50 % готового металла в виде корольков и до 15 % карбида кремния. Эти шлаки успешно используются в составе раскислительных и рафинирующих смесей в сталеплавильном производстве. Шлаки богатых по кремнию марок ферросилиция применяются в шихте взамен кварцита при выплавке силикохрома и низших марок ферросилиция.

Шлаки высокоуглеродистого феррохрома отличаются большой прочностью и используются вместо бутового камня при сооружении фундаментов. Напротив, шлаки рафинированного феррохрома являются саморассыпающимися и содержат до 5 % корольков сплава и 15 % хрома в оксидной форме. Корольки сплава отделяются от этого шлака воздушной или магнитной сепарацией. Для снижения содержания оксидов хрома в шлаке его требуется довосстанавливать при металлургическом переделе. Конечный шлак широко применяется как известковое удобрение в сельском хозяйстве, для изготовления жидких самотвердеющих смесей в литейном производстве, в составе минерального порошка для асфальтобетона в строительстве.

Особо важное значение имеет проблема утилизации шлаков, образующихся при выплавке марганцевых ферросплавов. На долю последних приходится 70 % всего объема производства ферросплавов. Кислые шлаки силикомарганца перерабатываются методом грануляции или дробятся для последующего использования в строительстве в качестве заполнителя бетона и щебня для дорог. При дроблении шлака силикомарганца образуется фракция 0-5 мм., называемая «шлаковым песком» и содержащая до 20 % корольков готового сплава. Шлаковый песок используется при изготовлении марганцевого агломерата для выплавки силикомарганца. Шлаки высокоуглеродистого ферромарганца после дробления применяют для легирования стали марганцем. Еще более для этой цели пригодны шлаки металлического марганца. Однако эти высокоосновные шлаки рассыпаются при хранении в порошок, что затрудняет их транспортировку и использование. Для получения шлаков металлического марганца в кусковом виде в шлак добавляют боратовую руду.


3.8 Организация безотходной технологии

Важнейшим фактором экономии ресурсов является их вторичное использование. При этом не только сберегаются невосполнимые первичные материалы, но и уменьшается загрязненность окружающей среды.

Вопросы организации малоотходных и безотходных технологических процессов имеют важное значение в ферросплавном производстве, которое сопровождается потерями ведущих элементов и образованием отходов на всех стадиях передела. Особенно велики потери при выплавке марганцевых ферросплавов. Если при выплавке ферросилиция и высокоуглероди­стого феррохрома извлечение ведущего элемента достигает 85-90 %, то при получении силикомарганца и высокоуглеродистого ферромарганца эта величина составляет 75-82 %.

На стадии обогащения марганцевых руд в виде шламов теряется до 25 % марганца, 24-26 % марганца теряется при электро-плавке сплавов марганца. Таким образом, в сталеплавильное производство поступает только 50 % добытого из недр марганца.

Добываемые марганцевые руды обычно содержат 22-28 % марганца. После промывки концентрация марганца возрастает до 32-38 %. Путем магнитной сепарации и других методов обогащения из мытой руды получают концентраты различных сортов.

Предложено несколько способов извлечения марганца из шламов обогащения руд. Так, полиградиентная сепарация шламов позволяет получить концентрат, содержащий 30-35 % марганца и пригодный для выплавки товарных ферросплавов. Среди химических методов извлечения марганца из шламов следует выделить дитионатный. Перспективным представляется гидрометаллургический способ, разработанный НМетАУ. В отличие от дитионатного способа, обеспечивающего доизвлечение марганца из шламов обогащения, этот способ позволяет удалять кремнезем и фосфор из марганцевых концентратов, что резко уменьшает количество отвальных шлаков и потери с ними марганца на стадии электроплавки. Совместное использование химических и гидрометаллургических способов обеспечивает создание сквозной малоотходной технологии в металлургии марганца.

Подготовка марганцевых концентратов к плавке включает их сушку в печах кипящего слоя с последующей агломерацией. Для выплавки высокоуглеродистого ферромарганца необходим офлюсованный агломерат, для выплавки же силикомарганца – неофлюсованный. Офлюсованный агломерат основностью 1,4-1,6 с добавкой известняка оказался нестойким к влаге воздуха. Этого недостатка лишен агломерат, полученный с использованием железорудного концентрата или отсевов доломита высокотемператур-ного обжига. Применение такого агломерата при выплавке высокоуглеродистого ферромарганца позволяет снизить расход электроэнергии на 1 тонн сплава, уменьшить расход кокса и увеличить производительность электропечей.

Выплавка силикомарганца по существующей технологии предусматривает использование дефицитного кварцита и обеспечивает переход в сплав 75-82 % марганца, заданного в печь. При брикетировании отвального шлака силикомарганца с газовым углем получают стандартный сплав с более высоким извлечением марганца (на 6-8 %).

Отвальные шлаки производства марганцевых ферросплавов содержат 14-16 % марганца при практическом отсутствии фосфора, тогда как в до­бываемой марганцевой руде концентрация марганца составляет 22-28 % при 0,2-0,3 % фосфора. Практикуемое сейчас использование этих шлаков в основном в строительстве нерационально, их можно более эффективно применять как металлургическое сырье, что будет рассмотрено далее.

Актуальной проблемой является утилизация высококалорийного колошникового газа ферросплавных электропечей. Пока этот газ после очистки используют для отопления котельных или просто сжигают «на свечах». Его целесообразнее применять для нагрева марганецсодержащей шихты в трубчатых вращающихся печах до 800-900 °С. Это позволит сэкономить до 17-23 % электроэнергии и повысить производительность ферросплавных электропечей на 18-20 %.

Кроме шлаков и газов к числу отходов ферросплавного производства относятся шламы, получающиеся в системах мокрой газоочистки (или пыль при сухой газоочистке), а также скрап и некондиционная мелочь, образующиеся при разливке и дроблении готового сплава. Шламы и пыль в окомкованном виде повторно используются в шихте электропечей. Скрап и некондиционная мелочь переплавляются в электропечах вместе с шихтой или задаются при разливке. В последнем случае скрап и мелочь плавятся за счет физического тепла перегретого сплава и практически полностью усваиваются.

В процессе получения марганцевых и кремнистых ферросплавов на ОАО «ЗФЗ» образуются отходы в виде сухой пыли аспирационных газоочисток, отвальные шлаки, скрап разливки, отсевы ферросплавов после фракционирования (таблица 3.1-3.2).

Улавливаемая сухими газоочистками аспирационная пыль, характеризуется мелкодисперсностью, значительной слипаемостью, развитой удельной поверхностью и стабильным химическим составом.
Таблица 3.1 – Химический состав материала

Наименование





Массовая доля, %

Мn

СаО

SiO2

AIO3

FeO

С

Р

S

Окатыши пылекоксовые (ОПК)

17–26


2,8–3,3

20–27

3,5–3,8




13–17

0,1

1,6–

1,7


Металлоконцентрат из отвальных шлаков ферросиликомарганца

18–19

7–11

49–50

6–10

0,6–1,6

1–4

0,02–0,12

0,6–0,8

Металлоконцентрат из текущих скрапов ферросиликомарганца

36–50

8,2

40–50

2,9

10,7

3,6

0,28

0,5

Отвальный шлак ферросилиция

0,20

6,5–6,6

65–66

27,5–28

0,3

6–8

0,03

0,3

Это позволяет использовать ее как связующее для окомкования коксовой мелочи, образую­щейся на узле подготовки восстановителя.

Металлоконцентрат из текущих отвальных шлаков и скрапов ферросиликомарганца содержит металлической фазы:

- из отвальных шлаков – до 25 %;

- из скрапов – 50-70%.

Металлическая фаза по химическому составу соответствует ферросиликомарганцу марки МнС17.

Отвальный шлак ферросилиция имеет от 10 до 40 % металлической фазы в виде корольков, химический состав которых соответствует ферросилицию, при производстве которого получен отвальный шлак.
Таблица 3.2 – Гранулометрический состав материалов

Наименование



Массовая доля фракций (мм), %

–10

10–15

+15

0–100

+100

Окатыши пылекоксовые (ОКП)

2–3

95–97

1–2





Металлоконцентрат из отвальных шлаков ферросиликомарганца










97

3

Металлоконцентрат из текущих скра­пов ферросиликомарганца










97–100

0–3

Отвальный шлак ферросилиция







95

5

Металлоконцентрат из отвальных шлаков ферросилиция










95–100

0–5

При выплавке ферросиликомарганца в составе шихты используются окатыши, марганецсодержащий металлоконцентрат и отвальный шлак ферросилиция. Производство ферросиликомарганца с использованием в шихту вторичных материалов осуществляется на печах РКЗ-23 непрерывным процессом с закрытым колошником при вторичном напряжении 165 В. и силе тока 69 кА. На одну тонну выплавляемого сплава, в совокупности с окисным марганцевым сырьем и восстановителем, расходуется, кг:

- окатышей – 25

- металлоконцентратов на основе отвальных шлаков – 28

- скрапов – 180

- отвального шлака ферросилиция – 100

Использование указанных вторичных материалов при выплавке ферросиликомарганца марки МнС17Р50 позволяет повысить извлечение марганца на 4 % абс; снизить удельный расход электроэнергии на 5,3 %, марганецсодержащего сырья на 6,5 %, восстановителя на 15,6 %.

Технология получения сплавов ФС45 и ФС65 с использованием вторичных материалов основана на сплавлении шихты из отсевов ферросилиция и металлоконцентрата из отвального шлака ферро-силиция. Процесс периодический, ведется в печах ДСП-1,5 под шлаками основностью до 0,5.


<< предыдущая страница   следующая страница >>
Смотрите также:
Учебное пособие для студентов металлургических специальностей Павлодар
1618.77kb.
9 стр.
Учебное пособие для магистрантов и студентов гуманитарных специальностей Павлодар
2151.47kb.
9 стр.
Учебно-методическое пособие для студентов юридических специальностей Павлодар 2008 удк ббк ж
1434.29kb.
6 стр.
Учебно-методическое пособие для студентов всех специальностей Павлодар
726.15kb.
3 стр.
Учебно-методическое пособие для студентов естественных специальностей Павлодар (075. 8) Ббк 20. 1я7 Б81
1215.69kb.
9 стр.
Учебное пособие для студентов экономических специальностей Красноярск 2009 Рецензент Печатается по решению Методической комиссии фэф
2429.54kb.
24 стр.
Учебное пособие для аспирантов и студентов всех специальностей Новосибирск 2006 Моргунов Г. В. Философия: Учебное пособие для студентов всех специальностей. Новосибирск: нф рап, 2006
3457.73kb.
40 стр.
Учебное пособие для самостоятельной работы студентов заочного отделения технических специальностей и естественнонаучных направлений
2194.42kb.
14 стр.
Учебное пособие для студентов естественных специальностей Павлодар (075. 8) Ббк 42. 2 я73 А57
2253.67kb.
27 стр.
Учебное пособие 28365942 Москва 2008 ббк 66. 0 П 50
2984.78kb.
13 стр.
Учебное пособие по развитию навыков устной речи для студентов I курса технических специальностей
303.9kb.
4 стр.
Учебное пособие для студентов специальностей 271200 «Технология продуктов общественного питания»
1268.65kb.
7 стр.