Главная
страница 1страница 2страница 3
Тема 5. ОБОНЯТЕЛЬНОЕ ВОСПРИЯТИЕ

Обоняние, являясь центральным чувством животных, у человека утратило это значение, поскольку высокоразвитые зрение и слух дают ему достаточно достоверное представление о среде. Тем не менее часто не осознавая этого, человек в своих поступках опирается на информацию, идущую от органов обоняния. Ориентируясь на запах, он способен отличать доброкачественную пищу от недоброкачественной. Запах позволяет узнавать и идентифицировать людей, ситуации, пробуждает воспоминания.

Люди могут различать более 1000 запахов, хотя в языке отсутствуют слова, позволяющие передать эти ощущения. Несоответствие возможностей человека идентифицировать пахучие вещества и способности языка их описать обнаруживается у разных народов. Это позволяет предположить, что в былые времена, когда лингвистические способности только начинали формироваться, ориентация на запахи у человека имела большее значение, чем теперь.

Не существует единой классификации пахучих веществ и единицы измерения силы запаха. Нет и удовлетворительной теории, объясняющей, каким образом мозг анализирует обонятельную информацию. Чувствительность обоняния крайне высока: нос распознает вещество в количестве одной десятимиллионной грамма.



Методические указания

Обычно пахучие материалы принадлежат к классу органических веществ с молекулярным весом от 15 до 300. Однако огромное количество веществ, соответствующих этим критериям, не имеет запаха, и пока нет обоснованного объяснения этому феномену. Чтобы пахучие вещества воспринимались органами обоняния, они должны обладать рядом свойств: быть летучими, растворяться в жирах и в воде хотя бы в ничтожных количествах (иначе они не достигнут нервных окончаний, поверхность которых покрыта водной пленкой).

Поток воздуха, вдыхаемый через нос, проходит в верхней части носовой полости между тремя косточками, имеющими форму раковин, согревается и фильтруется. При обнаружении запаха новая порция воздуха сильнее втягивается вверх к двум щелям, в которых находятся обонятельные рецепторы, расположенные в стороне от главного дыхательного пути. Эти образования представляют собой два участка желтоватой ткани обонятельного эпителия, каждый занимает площадь около 2,5 см2. В этой ткани находятся два типа нервных волокон, окончания которых воспринимают и обнаруживают пахучие молекулы.

Обонятельные рецепторы это биполярные нейроны, аксоны которых составляют обонятельный нерв. Они окружены опорными клетками, поддерживающими структуру рецепторов. На поверхности каждой обонятельной клетки имеется утолщение - булава, из которого выступают волоски. Они погружены в слизь, вырабатываемую боуменовыми железами. Благодаря волоскам резко повышается вероятность встречи с молекулами пахучего вещества, поскольку воспринимающая поверхность увеличивается в 100150 раз. Молекулы пахучего вещества первоначально растворяются в слизи, а затем активируют волоски. Кроме таких клеток, обонятельный эпителий имеет свободные окончания тройничного нерва. Возможно, они опосредуют болевые ощущения при вдыхании некоторых веществ, например аммиака.

На поверхности волосков находится белок, взаимодействующий с молекулой пахучего вещества, как ключ и замок. Потенциал клетки в спокойном состоянии составляет 45 мВ. Стимуляция запахом открывает ионные каналы, вызывающие деполяризацию мембраны и развитие ПД. Каждая обонятельная клетка может ответить изменением активности на многие пахучие вещества. Аксоны от рецепторов заканчиваются на обонятельных луковицах, лежащих в основании мозга. В луковицах аксонные окончания обонятельных нейронов образуют синапсы с нейронами, аксоны которых затем в составе обонятельного тракта идут дальше в мозг.
Контрольные вопросы:


  1. Что позволяет идентифицировать запах и с чем связывают низкую по сравнению с животными значимость обоняния у человека?

  2. Как много запахов способен различить человек? Как эти различия отражаются в речи? И с чем связывают именно такое отражение?

  3. Какими свойствами должны обладать пахучие вещества, чтобы быть восприняты органами обоняния?

  4. Опишите устройство обонятельных рецепторов.

  5. Как происходит восприятие запахов? Опишите структуру обонятельной системы.


Тема 6. СОМАТОСЕНСОРНАЯ И ВИСЦЕРАЛЬНАЯ СИСТЕМЫ

Соматосенсорная система обеспечивает мозг информацией о событиях, происходящих на поверхности тела и внутри него. Кожная чувствительность обусловливает несколько видов ощущений, возникающих в процессе прикосновения. Кинестетическое чувство обеспечивает мозг информацией о положении тела в пространстве и связано с рецепторами, расположенными в связках, сухожилиях, суставах, мышцах.

Висцеральная рецепция связана с многочисленными рецепторами, находящимися во внутренних органах тела человека и поэтому называющимися вuсцеро-рецепторамu. Среди них могут быть рецепторы давления, растяжения, боли, температурные рецепторы, хеморецепторы и т.д. Ощущения, возникающие от возбуждения этих рецепторов, преимущественно не осознаются, хотя они влияют на настроение и поведение человека. На них можно выработать условные рефлексы.

Методические указания

Кожа наружная оболочка, покрывающая организм человека, выполняет, с одной стороны, функцию защиты от внешних воздействий, с другой воспринимает эти внешние воздействия, поставляя в мозг информацию о многих параметрах среды. Кожа реагирует на давление, вибрацию, изменения температуры, повреждение ткани (боль). Чувство давления возникает в результате механической деформации кожи. Ощущение вибрации сопровождает движение по неровной поверхности.

Общая поверхность кожи достигает двух квадратных метров. Кожа включает верхний слой, или эпидермис, собственно кожу и подкожную клетчатку. Рецепторы имеются в каждом из этих слоев, однако их набор различается на покрытых волосами) и безволосых участках кожи.

На покрытых волосами участках кожи, которые составляют 90 % всей ее поверхности, находятся свободные нервные окончания и тельца Руффини. Свободные нервные окончания представляют собой немиелинизированные или слабо миелинизированные волокна. Они располагаются вдоль мелких сосудов или вокруг волосяных сумок, обеспечивая ощущение боли и чувствительность к изменению температуры. Тельца Руффини реагируют на низкочастотную вибрацию.

Участки кожи, на которых отсутствуют волосы, имеют более сложный набор из свободных нервных окончаний и аксонов, которые заканчиваются внутри специализированных рецепторов. Большое разнообразие рецепторного набора безволосой поверхности кожи может отражать специфичность тех участков, которые человек активно использует в познании мира (пальцы, ладони, подошвы). Остальная поверхность кожи участвует в восприятии более пассивно.

На безволосых участках кожи располагаются тельца Пачини. Они являются самыми большими сенсорными окончаниями на теле. Их размер (приблизительно 0,5 х 1,0 мм) позволяет видеть эти рецепторы невооруженным глазом. Тельца Пачини находятся на безволосой коже, поверхности гениталиев, грудных железах и в различных внутренних органах. Они чувствительны к прикосновению и представляют собой почти 70 лукоподобных слоев, расположенных вокруг одной миелинизированной аксонной терминали. На прикосновение отчасти реагируют также Мейснеровы тельца и диски Меркеля. Мейснеровы тельца располагаются в сосочках кожи местах внедрения собственно кожи в эпидермис. Каждое из телец иннервируется двумяшестью аксонами. Диски Меркеля найдены у основания эпидермиса поблизости от протоков потовых желез. Особенно много их встречается на кончиках пальцев и губах.

Чувства сдавливания и вибрации вызываются движением кожи. Наиболее изученным рецептором прикосновения является тельце Пачини, которое реагирует на вибрацию. Описан процесс превращения энергии давления в энергию электрического возбуждения в аксоне этого рецептора. При отклонении тельца Пачини относительно аксона его мембрана деполяризуется. Если эта деполяризация достигает пороговогo потенциала, в первом перехвате Ранвье миелинизированного волокна возникает потенциал действия. Движущийся кончик нервного окончания тельца Пачини, по-видимому, вызывает рецепторный потенциал открытием ионных каналов на мембране, стенки которых закреплены под мембраной белковыми филаментами (тонкими волокнами), имеющими длинные углеводородные цепи. При изменении размера нервного окончания растет натяжение углеводородной цепи, которая открывает канал. Большая капсула тельца Пачини служит для усиления давления, о наличии которого сигнализирует рецептор. Тельце Пачини может адаптироваться, т. е. при длительном воздействии умеренного сигнала перестает на него реагировать и не посылает информацию в мозг (именно поэтому люди не чувствуют одежду, которую носят на своем теле).

Оценка состояния тепла или холода организмом не является абсолютной, поскольку это всегда определение того, насколько больше или меньше относительно кожи температура объекта. Исследование температурных рецепторов методически достаточно затруднено, поскольку при любом экспериментальном изменении температуры сдвигается метаболическая активность соседних клеток. Уже говорилось, что рецепторы, реагирующие на давление, могут отвечать и на изменение температуры. Многие исследователи полагают, что на температурные изменения в большей мере реагируют свободные нервные окончания, хотя эту же функцию выполняют и колбочки Краузе. Остается неясным, каким образом температурные изменения приводят к появлению электрического импульса в нервном окончании.

Температурные рецепторы найдены не только на поверхности тела, но и на внутренних органах (например, в гипоталамусе). Существуют отдельные рецепторы, реагирующие на тепло или холод, причем относительное число тепловых рецепторов меньше. И тех и других больше всего выявлено на поверхности шеи и головы.

Рецепторы, отвечающие за чувствительность к теплу и холоду, лежат в коже на разной глубине: тепловые на глубине примерно 0,30мм от поверхности кожи, а холодовые на глубине 0,17 мм. Это объясняет тот факт, что при интенсивной тепловой стимуляции человек сначала может почувствовать прохладу, а затем тепло.

Боль возникает при воздействии самых разных причин. Большая часть исследователей идентифицирует ее с активностью свободных нервных окончаний. Интенсивная механическая стимуляция активирует высокопороговые рецепторы и вызывает ощущение боли. Этот же эффект возникает и при повреждении кожного покрова любым образом.

Ощущение боли связано не только с раздражением определенных рецепторов. Переживание боли меняется под воздействием опиатов, гипноза, эмоциональных событий. Ее силу можно изменить и с помощью некоторых форм стимуляции, например акупунктурой. Следовательно, переживание боли возникает как суммация комплекса ощущений в ассоциативных областях коры.

Адаптивное значение боли подтверждается, в частности, тем, что люди с врожденным отсутствием чувствительности к боли имеют много тяжелых повреждений и редко живут долго. Боль не предупреждает их о начале приступа аппендицита; возникновении инфекций, появлении камней в почках, развитии инфаркта миокарда и т. д. Различают восприятие боли и устойчивость по отношению к ней.

Синаптическая передача болевых сигналов в головной мозг непосредственно связана с веществом Р. В задних рогах спинного мозга вставочные модулирующие нейроны образуют синапсы на аксонных окончаниях болевых нейронов. Эта связь опосредуется энкефалином, который препятствует выходу вещества Р, что уменьшает возбуждение постсинаптического нейрона, посылающего в головной мозг сигналы о боли. Болевые рецепторы могут как адаптироваться, так и не адаптироваться в зависимости от качества боли, о которой они сигнализируют.

Боль передается по тонким немиелинизированным волокнам типа С со скоростью 12 м/сек. и по тонким миелинизированным волокнам А-дельта, которые проводят импульсы значительно быстрее со скоростью 515 м/с. Именно поэтому боль часто сначала воспринимается как быстрое давление, а затем, немного позднее, превращается в ноющее жгучее ощущение.

Информация от соматосенсорных нейронов из кожи, мышц, внутренних органов направляется в центральную нервную систему двумя путями. Первый называется лемнисковым. По нему передаются сигналы о тактильных воздействиях, угловых перемещениях суставов, т. е. информация, которая должна быть определена точно. По этому пути она передается достаточно быстро. Аксоны, образующие этот путь, в составе белого вещества спинного мозга поступают в ядра нижнего отдела продолговатого мозга.

Далее они переключаются в заднем вентральном ядре для соматической чувствительности. Отсюда аксоны проецируются в первичную соматосенсорную кору. С каждым следующим переключением рецептивные поля нейронов расширяются. Корковая часть этого пути характеризуется четкой топографической локализацией: каждая точка на поверхности кожи определенным образом представлена в коре.

Второй путь спиноталамическuй − составлен аксонами болевых и температурных рецепторов и имеет переключение внутри спинного мозга. Оттуда волокна направляются в заднее вентральное ядро таламуса. По этому пути передается информация, не имеющая четкой локализации, и скорость ее передачи ниже, чем в лемнисковом пути.

Соматосенсорная кора состоит из колонок, нейроны которых отвечают за какой-то один тип стимуляции определенного участка тела. Установлено, что первичная и вторичная соматосенсорная зоны коры подразделены как минимум на пять (а возможно, на десять) участков, представляющих карту человеческого тела. Внутри каждой такой карты нейроны отвечают за отдельную субмодальность соматосенсорных рецепторов.

Первая соматосенсорная зона коры расположена в задней центральной извилине. Размер ее значительно больше, чем у второй. К этой зоне поступают афферентные импульсы от заднего вентрального ядра таламуса, доставляющие информацию, полученную кожными, суставно-мышечными и висцеральными рецепторами противоположной стороны тела.

Площадь корковой проекции определяется количеством клеток коры, участвующих в переработке сигналов того или иного рецепторного поля. Чем больше количество клеток, тем более дифференцирована обработка. Корковые проекции рецепторов висцеральных афферентных систем (пищеварительного тракта, выделительного аппарата, сердечно-сосудистой системы) расположены в области представительства кожных рецепторов соответствующего участка. Вторая соматосенсорная зона находится под роландовой бороздой и распространяется на верхний край Сильвиевой; афферентные импульсы в эту зону поступают из заднего вентрального ядра таламуса.

По-видимому, каждому анализатору, описанному в разделах по восприятию информации, соответствует теория многоступенчатой интеграции сигналов. Согласно этому представлению, объединение различных воздействий происходит поэтапно, причем на каждой ступени синтеза участвуют и восприятие, и осознание. Интеграция же осуществляется не путем конвергенции информации в высшей точке, а благодаря наличию множества прямых и обратных связей между специализированными зонами.


Контрольные вопросы:

  1. Какой информацией обеспечивает мозг соматосенсорная система?

  2. С восприятием какой информации связана висцеральная рецепция?

  3. Опишите строение кожи и ее рецепторов.

  4. Как вызываются чувства сдавливая и вибрации?

  5. Почему мы не чувствуем одежду, которую носим на своем теле?

  6. Как мы воспринимаем температуру?

  7. Как объясняют восприятие боли?

  8. Что такое анальгезия?

  9. Что и как может поменять восприятие человеком боли?

  10. Какие мозговые структуры причастны к восприятию боли?

  11. Почему боль часто сначала воспринимается как быстрое давление, а затем уже превращается в ноющее жгучее ощущение?

  12. Назовите два пути передачи соматосенсорной информации в мозг.

  13. Какая информация передается по лемнисковому пути и как?

  14. Какая информация передается по спиноталамическому пути и как?

  15. Как устроена соматосенсорная кора?

  16. Как объясняется восприятие различных воздействий?


Тема 7. ПСИХОФИЗИОЛОГИЯ ВНИМАНИЯ

В психологии внимание определяется как процесс и состояние настройки субъекта на восприятие приоритетной информации и выполнение поставленных задач. Направленность и сосредоточенность психической деятельности при внимании обеспечивает более эффективное восприятие информации. В общем плане выделяют два основных вида внимания: непроизвольное и произвольное (избирательное, селективное). Оба вида внимания имеют разные функции, по-разному формируются в онтогенезе, и в их основе лежат различные физиологические механизмы.



Методические указания

Принято считать, что физиологическую основу, на которой развивается и функционирует непроизвольное внимание, составляет ориентировочная реакция.



Ориентировочная реакция (ОР) впервые была описана И. П. Павловым как двигательная реакция животного на новый, внезапно появляющийся раздражитель. Она включала поворот головы и глаз в сторону раздражителя и обязательно сопровождалась торможением текущей условно-рефлекторной деятельности. Другая особенность ОР заключалась в угашении всех ее поведенческих проявлений при повторении стимула. Угасшая ОР легко восстанавливалась при малейшем изменении обстановки.

Физиологические показатели ОР. Использование полиграфической регистрации показало, что ОР вызывает не только поведенческие проявления, но и целый спектр вегетативных изменений. Отражением этих генерализованных изменений являются различные компоненты ОР: двигательный (мышечный), сердечный, дыхательный, кожно-гальванический, сосудистый, зрачковый, сенсорный и электроэнцефалографический. Как правило, при предъявлении нового стимула повышается мышечный тонус, изменяется частота дыхания, пульса, возрастает электрическая активность кожи, расширяются зрачки, снижаются сенсорные пороги. В электроэнцефалограмме в начале ориентировочной реакции возникает генерализованная активация, которая проявляется в блокаде (подавлении) альфа-ритма и смене его высокочастотной активностью. Одновременно с этим возникает возможность объединения и синхронной работы нервных клеток не по принципу их пространственной близости, а по функциональному принципу. Благодаря всем этим изменениям возникает особое состояние мобилизационной готовности организма.

Нервная модель стимула. Механизм возникновения и угашения ОР получил толкование в концепции нервной модели стимула, предложенной Е. Н. Соколовым. Согласно этой концепции, в результате повторения стимула в нервной системе формируется «модель», определенная конфигурация следа, в которой фиксируются все параметры стимула. Ориентировочная реакция возникает в тех случаях, когда обнаруживается рассогласование между действующим стимулом и сформированным следом, т.е. «нервной моделью». Если действующий стимул и нервный след, оставленный предшествующим раздражителем, идентичны, то ОР не возникает. Если же они не совпадают, то ориентировочная реакция возникает и оказывается до известной степени тем сильнее, чем больше различаются предшествующий и новый раздражители. Поскольку ОР возникает в результате рассогласования афферентного раздражения с «нервной моделью» ожидаемого стимула, очевидно, что ОР будет длиться до тех пор, пока существует эта разница.

В соответствии с этой концепцией ОР должна фиксироваться при любом сколько-нибудь ощутимом расхождении между двумя последовательно предъявляемыми стимулами. Имеются, однако, многочисленные факты, которые свидетельствуют о том, что ОР далеко не всегда обязательно возникает при изменении параметров стимула.



Значимость стимула. Ориентировочный рефлекс связан с адаптацией организма к меняющимся условиям среды, поэтому для него справедлив «закон силы». Иначе говоря, чем больше изменяется стимул (например, его интенсивность или степень новизны), тем значительнее ответная реакция. Однако не меньшую, а нередко и большую реакцию могут вызвать ничтожные изменения ситуации, если они прямо адресованы к основным потребностям человека.

Кажется, что более значимый и, следовательно, в чем-то уже знакомый человеку стимул должен при прочих равных условиях вызывать меньшую ОР, чем абсолютно новый. Факты, однако, говорят о другом. Значимость стимула нередко имеет решающее значение для возникновения ОР. Высокозначимый стимул может вызвать мощную ориентировочную реакцию, имея небольшую физическую интенсивность.

По некоторым представлениям, факторы, провоцирующие ОР, можно упорядочить, выделив 4 уровня, или регистра: стимульный регистр; регистр новизны; регистр интенсивности; регистр значимости.

Первый уровень оценки проходят практически все стимулы, второй и третий регистры работают параллельно. Пройдя любой из этих двух регистров, стимул поступает в последний и там оценивается его значимость. Только после этого завершающего акта оценивания развивается весь комплекс ориентировочной реакции.

Таким образом, ОР возникает не на любой новый стимул, а только на такой, который предварительно оценивается как биологически значимый. Иначе мы переживали бы ОР ежесекундно, так как новые раздражители действуют на нас постоянно. Оценивая ОР, следовательно, надо учитывать не формальное количество информации, содержащейся в стимуле, а количество семантической, значимой информации.

Существенно и другое: восприятие значимого стимула нередко сопровождается формированием ответной адекватной реакции. Присутствие моторных компонентов свидетельствует о том, что ОР предоставляет собой единство воспринимающих и исполнительных механизмов. Таким образом, ОР, традиционно рассматриваемая как реакция на новый раздражитель, представляет частный случай ориентировочной деятельности, которая понимается как организация новых видов деятельности, формирование активности в изменившихся условиях среды.

Одним из наиболее выдающихся достижений нейрофизиологии в ХХ в. явилось открытие и систематическое изучение функций неспецифической системы мозга, которое началось с появления в 1949 г. книги Г. Моруцци и Г. Мэгуна «Ретикулярная формация мозгового ствола и реакция активации в ЭЭГ».

Ретикулярная формация наряду с лимбической системой образуют блок модулирующих систем мозга, основной функцией которых является регуляция функциональных состояний организма. Первоначально к неспецифической системе мозга относили в основном лишь сетевидные образования ствола мозга и их главной задачей считали диффузную генерализованную активацию коры больших полушарий. По современным представлениям, восходящая неспецифическая активирующая система простирается от продолговатого мозга до зрительного бугра (таламуса).

Функции таламуса. Таламус, входящий в состав промежуточного мозга, имеет ядерную структуру. Он состоит из специфических и неспецифических ядер. Специфические ядра обрабатывают всю поступающую в организм сенсорную информацию, поэтому таламус образно называют коллектором сенсорной информации. Специфические ядра таламуса связаны главным образом с первичными проекционными зонами анализаторов. Неспецифические ядра направляют свои восходящие пути в ассоциативные зоны коры больших полушарий.

В 1955 г. Г. Джаспером было сформулировано представление о диффузно-проекционной таламической системе. Опираясь на целый ряд фактов, он утверждал, что диффузная проекционная таламическая система (неспецифический таламус) в определенных пределах может управлять состоянием коры, оказывая на нее как возбуждающее, так и тормозное влияние.

По современным представлениям, переключение активирующих влияний с уровня ретикулярной формации ствола мозга на уровень таламической системы означает переход от генерализованной активации коры к локальной. Первая отвечает за глобальные сдвиги общего уровня бодрствования; вторая отвечает за избирательное сосредоточение внимания.


<< предыдущая страница   следующая страница >>
Смотрите также:
Методическое пособие для студентов специальности 1 58 01 01 «Инженерно-психологическое обеспечение информационных технологий»
418.48kb.
3 стр.
Учебная программа для специальности: ( рабочий вариант) 1-40 01 01 «Программное обеспечение информационных технологий»
99.78kb.
1 стр.
Учебно-методическое пособие infotech hardware москва 2009
810.67kb.
8 стр.
Методическое пособие по дисциплине «Статистика» для специальности «Экономика и бухгалтерский учет (по отраслям): Методическое пособие /Под редакцией В. Ю. Ершовой
1269.9kb.
12 стр.
Учебная программа для специальности: ( рабочий вариант) 1-40 01 01 «Программное обеспечение информационных технологий»
160kb.
1 стр.
Методическое пособие для студентов всех форм обучения специальности «Физическая культура для лиц с отклонениями в состоянии здоровья
482.09kb.
2 стр.
Методическое пособие для практических занятий студентов по специальности "География"
364.84kb.
6 стр.
Учебно-методическое пособие для студентов, обучающихся по специальности 1-08 01 01 «Профессиональное обучение»
590.08kb.
4 стр.
Методическое пособие для студентов специальности 1  70 01 01 «Производство строительных изделий и конструкций»
487.32kb.
4 стр.
Методическое пособие по курсу персональная электроника жидкокристаллические мониторы Для студентов специальности 200800
254.83kb.
1 стр.
Методическое пособие по курсу «Язык разметки xml. Часть 1» Методическое пособие для студентов специальности «Компьютерные системы и сети»
682.79kb.
3 стр.
Методическое пособие предназначено для студентов специальности "Психология"
1007.82kb.
6 стр.